
Reusable
Firmware
Development

A Practical Approach to APIs, HALs
and Drivers
—
Jacob Beningo

Reusable Firmware
Development

A Practical Approach to APIs,
HALs and Drivers

Jacob Beningo

Reusable Firmware Development: A Practical Approach to APIs, HALs and Drivers

ISBN-13 (pbk): 978-1-4842-3296-5			 ISBN-13 (electronic): 978-1-4842-3297-2
https://doi.org/10.1007/978-1-4842-3297-2

Library of Congress Control Number: 2017961731

Copyright © 2017 by Jacob Beningo

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewers: Ahmed Hag-ElSafi and Rami Zewail
Coordinating Editor: Mark Powers
Copy Editor: April Rondeau

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484232965. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jacob Beningo
Linden, Michigan, USA

https://doi.org/10.1007/978-1-4842-3297-2

To my lovely wife, children, parents, and siblings.

v

About the Author�� xiii

About the Technical Reviewers��xv

Acknowledgments��xvii

Preface��xix

Introduction���xxi

Table of Contents

Chapter 1: �Concepts for Developing Portable Firmware�� 1

Why Code Reuse Matters��� 1

Portable Firmware��� 3

Modularity�� 9

Module Coupling and Cohesion�� 10

Following a Standard��� 12

Portability Issues in C—Data Types��� 13

Portability Issues in C—Structures and Unions��� 14

Portability Issues in C—Bit Fields�� 15

Portability Issues in C—Preprocessor Directives�� 16

Embedded-Software Architecture�� 18

Hardware Abstraction Layers (HAL)��� 21

Application Programming Interfaces (APIs)��� 23

Project Organization��� 24

Getting Started Writing Portable Firmware�� 25

Going Further��� 28

vi

Chapter 2: �API and HAL Fundamentals�� 29

The Wonderful World of HALs��� 29

APIs Versus HALs�� 30

The API and HAL Landscape�� 31

The Good, Bad, and Ugly�� 33

Potential Issues and the Boogeyman��� 33

Characteristics Every HAL Should Exhibit�� 36

Characteristic #1: Contains a Well-Defined Coding Standard��� 37

Characteristic #2: Reasonable Documentation and Comments��� 37

Characteristic #3: Written in C99�� 38

Characteristic #4: Can Be Compiled in Any Modern Compiler�� 38

Characteristic #5: Abstract Useful Hardware Features��� 39

Characteristic #6: Easily Extensible�� 40

Characteristic #7: Modular and Adaptable��� 40

Characteristic #8: Deterministic and Well-Understood Behavior�� 41

Characteristic #9: Error-Handling and Diagnostic Capabilities��� 42

Characteristic #10: Integrated Regression Testing �� 43

Evaluating HAL Characteristics�� 44

To Build or Not to Build�� 45

A First Look at a HAL�� 47

The API Scope�� 48

API Characteristics to Look For�� 49

Characteristic #1: Using const Frequently�� 49

Characteristic #2: Easily Understood Naming Conventions�� 50

Characteristics #3: Consistent Look and Feel�� 53

Characteristic #4: Well Documented��� 53

Characteristic #5: Flexible and Configurable�� 53

Designing Your Own APIs��� 53

A First Look at an API��� 54

Wrapping APIs�� 55

Table of Contents

vii

Why Design Your Own APIs and HALs?�� 57

Comparing APIs and HALs�� 58

Going Further��� 58

Chapter 3: �Device Driver Fundamentals in C��� 61

Understanding the Memory Map��� 61

Planning the Driver Interfaces��� 64

Design by Contract��� 66

Assertion Fundamentals�� 68

Device Driver Models��� 70

Polling Versus Interrupt-Driven Drivers�� 71

Driver Component Definition�� 76

Naming Convention Recommendations��� 78

Object-Oriented Programming in C�� 79

Abstractions and Abstract Data Types (ADTs)�� 80

Encapsulation and Data Hiding�� 86

Callback Functions��� 86

Error Handling�� 89

Leverage Design Patterns�� 90

Expected Results and Recommendations�� 91

Going Further��� 92

Chapter 4: �Writing Reusable Drivers��� 95

Reusable Drivers�� 95

Deciphering the extern and static Keywords��� 95

Deciphering the volatile Keyword ��� 98

Deciphering the const Keyword �� 99

Memory-Mapping Methodologies�� 101

Mapping Memory Directly�� 101

Mapping Memory with Pointers��� 102

Mapping Memory with Structures�� 105

Using Pointer Arrays in Driver Design��� 106

Table of Contents

viii

Creating a Timer Driver Overview�� 107

Step #1: Define the Timer’s Configuration Table��� 108

Step #2: Define the Timer’s Peripheral Channels��� 109

Step #3: Populate the Timer’s Configuration Table��� 110

Step #4: Create the Timer’s Pointer Arrays��� 111

Step #5: Create the Initialization Function�� 112

Step #6: Fill in the Timer Driver Interface��� 116

Step #7: Maintain and Port the Design Pattern ��� 116

Selecting the Right Driver Implementation ��� 117

Going Further��� 118

Chapter 5: �Documenting Firmware with Doxygen��� 121

The Importance of Good Documentation�� 121

Easing the Documentation Load�� 122

An Introduction to Doxygen�� 124

Installing Doxygen�� 126

Documentation Project Setup�� 127

Doxygen Comment Fundamentals��� 131

Documenting enum and struct�� 132

Documenting Functions��� 133

Documenting Modules��� 137

Creating a Reusable Template��� 139

Generating a Main Page��� 140

Ten Tips for Commenting C Code��� 142

Tip #1: Explain the Why, Not the How��� 143

Tip #2: Comment Before Coding��� 143

Tip #3: Use Doxygen Tags��� 144

Tip #4: Adopt a Code Style Guide�� 144

Tip #5: Use a File Header�� 145

Tip #6: Create a Commenting Template�� 145

Table of Contents

ix

Tip #7: Have a Consistent Comment Location�� 146

Tip #8: Don’t Comment Every Line��� 146

Tip #9: Start Mathematical Type Identifiers with the Type�� 146

Tip #10: Update Comments with Code Updates��� 147

A Few Final Thoughts on Documentation��� 147

Going Further��� 148

Chapter 6: �The Hardware Abstraction Layer Design Process�������������������������������� 149

Why Use a HAL?��� 149

A Good HAL’s Characteristics��� 150

The HAL Design Process�� 151

Step #1: Review the Microcontroller Peripheral Datasheet��� 152

Step #2: Identify Peripheral Features��� 152

Step #3: Design and Create the Interface�� 153

Step #4: Create Stubs and Documentation Templates��� 155

Step #5: Implement for Target Processor(s)��� 158

Step #6: Test, Test, Test�� 158

Step #7: Repeat for the Next Peripheral��� 160

10 ��Tips for Designing a HAL��� 161

Tip #1: Identify Core Features��� 161

Tip #2: Avoid an All-Encompassing HAL��� 161

Tip #3: Add Register-Access Hooks�� 162

Tip #4: Use Doxygen to Outline the HAL��� 162

Tip #5: Get a Second Set of Eyes�� 162

Tip #6: Don’t Be Afraid to Iterate�� 163

Tip #7: Keep the View at 30,000 Feet��� 163

Tip #8: Use Appropriate Naming Conventions�� 164

Tip #9: Include a Parameter for Initialization�� 164

Tip #10: Deploy on Multiple Development Kits��� 164

Going Further��� 165

Table of Contents

x

Chapter 7: �HAL Design for GPIO��� 167

GPIO Peripherals Overview�� 167

Step #1: Review the GPIO Peripheral Datasheet�� 167

Step #2: GPIO Peripheral Features��� 168

Step #3: Design and Create the GPIO HAL Interface�� 169

Step #4: Create GPIO Stubs and Documentation Templates�� 172

Step #5: Implement GPIO HAL for Target Processor��� 192

Step #6: Test, Test, Test�� 198

Step #7: Repeat for the Next Peripheral��� 198

Going Further��� 199

Chapter 8: �HAL Design for SPI��� 201

An Overview of SPI Peripherals��� 201

Step #1: Review the SPI Peripheral Datasheet�� 202

Step #2: SPI Peripheral Features��� 203

Step #3: Design and Create the SPI HAL Interface��� 204

Step #4: Create SPI Stubs and Documentation Templates��� 205

Step #5: Implement SPI HAL for Target Processor��� 209

Step #6: Test, Test, Test�� 215

Step #7: Repeat for the Next Peripheral��� 216

Going Further��� 216

Chapter 9: �HAL Design for EEPROM and Memory Devices������������������������������������� 219

An Overview of Memory Devices��� 219

Step #1: Review the EEPROM Peripheral Datasheet�� 221

Step #2: EEPROM Peripheral Features��� 222

Step #3: Design and Create the EEPROM HAL Interface�� 224

Step #4: Create EEPROM Stubs and Documentation Templates�� 227

Step #5: Implement EEPROM HAL for Target Processor��� 231

Step #6: Test, Test, Test�� 237

Table of Contents

xi

Step #7: Repeat for the Next Peripheral��� 237

Extending the EEPROM HAL��� 237

Going Further��� 240

Chapter 10: �API Design for Embedded Applications�� 243

Applications Made Easier��� 243

Designing APIs��� 245

Application Frameworks�� 246

Creating Your Own APIs�� 247

Common Software Frameworks—RTOS and Schedulers�� 248

Common Software Frameworks— Console Applications�� 250

Common Software Frameworks—Bootloaders��� 252

Common Software Frameworks—FAT File System��� 254

Going Further��� 256

Chapter 11: �Testing Portable Embedded Software�� 257

Cross Your Fingers and Pray�� 257

Unit Testing�� 258

Taking Advantage of Cyclomatic Complexity for Unit Testing�� 260

Standard Interface . . . Standard Tests��� 263

Functional Testing�� 264

Test-Driven Development��� 265

Hardware In-Loop Testing�� 266

Regression Testing��� 268

Automating Tests�� 269

Using Trace to Verify Application Software�� 270

A Modern Example: The Renesas Synergy™ Platform�� 272

Going Further�� 274

Table of Contents

xii

Chapter 12: �A Practical Approach to Code Reuse�� 277

Being Practical in an Unpractical Environment�� 277

Phases and Baby Steps�� 278

Identifying Desired Results and Outcomes�� 280

Desired Results: Decreasing Time to Market�� 281

Desired Results: Decreasing Development Costs��� 282

Desired Results: Increased Quality��� 283

Evaluating Where You Are�� 284

Defining How to Get There��� 284

Getting the Most from Metrics��� 285

Metrics Worth Tracking�� 285

Assess the Results��� 288

Recognizing Design Patterns��� 288

Creating Templates and Checklists�� 289

Version Control Is Your Best Friend�� 292

Tip #1: Commit Frequently��� 293

Tip #2: Fill in the commit log�� 293

Tip #3: Don’t forget to add files to the VCS��� 294

Tip #4: Define a commit process�� 294

Tip #5: Lock modules that are in process��� 294

Tip #6: Utilize the code-comparison tools�� 295

Tip #7: Don’t fear merging code branches��� 295

What Is the Cost to Do Nothing?�� 295

Final Thoughts�� 297

Going Further��� 298

�Index�� 301

Table of Contents

xiii

About the Author

Jacob Beningo is an embedded software consultant with

over 15 years of experience in microcontroller-based real-

time embedded systems. After spending over ten years

designing embedded systems for the automotive, defense,

and space industries, Jacob founded Beningo Embedded

Group in 2009. Jacob has worked with clients in more than a

dozen countries to dramatically transform their businesses

by improving product quality, cost, and time to market. He

has published more than 200 articles on embedded software

development techniques and is a sought-after speaker and

technical advisor. Jacob is an avid writer, trainer, consultant,

and entrepreneur who transforms the complex into simple and understandable

concepts that accelerate technological innovation.

Jacob has demonstrated his leadership in the embedded-systems industry by

consulting and working as a trusted advisor at companies such as General Motors, Intel,

Infineon, and Renesas. Jacob also speaks at and is involved in the embedded track-

selection committees at ARM Techcon, Embedded System Conferences, and Sensor

Expo. Jacob holds bachelor’s degrees in electrical engineering, physics, and mathematics

from Central Michigan University and a master’s degree in space systems engineering

from the University of Michigan.

In his spare time, Jacob enjoys spending time with his family, reading, writing, and

playing hockey and golf. When there are clear skies, he can often be found outside with

his telescope, sipping a fine scotch while imaging the sky.

xv

About the Technical Reviewers

Ahmed S. Hag-ElSafi (Khartoum, 1978) holds Bachelor

of Science and Master of Science degrees in electronics

and communications engineering from the Arab Academy

for Science and Technology, earned in 2002 and 2004

respectively. 

He has 15 years of experience of research and industrial

development in the areas of embedded systems and

machine learning. He has published more than fifteen

papers in the areas of IOT security, biometrics, machine

learning, and medical image processing. He is currently the

co-founder and principal researcher at Smart Empower Innovation Labs Inc. in Alberta,

Canada.

Mr. Hag-ElSafi is a member the Smart City Alliance in Alberta, Canada, and the

Association of Professional Engineers and Geoscientists of Alberta (APEGA).

Rami Zewail received Bachelor of Science and Master

of Science degrees in electronics and communications

engineering from the Arab Academy for Science and

Technology, Egypt, earned in 2002 and 2004 respectively. He

earned his PhD in electrical and computer engineering from

the University of Alberta, Canada, in 2010. 

He has over 15 years of academic and industrial R&D

experience in the areas of embedded systems and machine

learning. He has contributed to the scientific community

with a patent and over 19 publications in the areas of embedded computing, machine

learning, and statistical modeling. Currently, he is co-founder and staff researcher at

Smart Empower Innovations Labs Inc., a Canada-based R&D and consulting corporation

specialized in the fields of embedded systems and machine learning.

xvi

Dr. Zewail is a member of the Institute of Electrical and Electronics Engineers (IEEE),

the Association of Professional Engineers & Geoscientists (APEGA), and the Canadian

Association for Artificial Intelligence. He also served as a reviewer for the Journal of

Electronics Imaging and the Journal of Optical Engineering for the SPIE society in the

United States.

About the Technical Reviewers

xvii

Acknowledgments

I would like to thank my parents, teachers, and family for inspiring me and encouraging

me to pursue my passions. Without their help, this book and the very direction my career

has taken would never have happened.

I would also like to thank the countless and often nameless software engineers

who came before us and laid the foundation upon which this book sits. Without their

contributions to this industry and their inspiration, I would never have embarked on

such an undertaking.

I would also like to thank Salvador Almanza and Benjamin Sweet for acting as

sounding boards and reviewing portions of the manuscript.

Finally, I would like to thank Max “The Magnificient” Maxfield for encouraging me to

write this book and sharing his publishing experiences with me.

xix

Preface

In 2001, when I was a bright-eyed college sophomore, I would spend my evenings doing

something a bit unusual—writing embedded software. Writing embedded software

is not necessarily unusual, except that any observer would think that I wasn’t writing

the software for any particular purpose. I was not designing any specific product or

experimenting to understand how things work. Instead, I was focused on understanding

how to write portable and reusable software for microcontroller-based systems.

My idea and hope was that I could develop libraries and code modules that would

allow me to quickly meet any project requirements that might be thrown my way. In

theory, these libraries would allow me to get a microcontroller up and running and

interface with external communication devices at a fraction of the time and cost that it

would take if I started from scratch every time.

Looking back on this endeavor, I realize that this was a pivotal period that would

permeate my professional career, even now. Unfortunately, as a college student in 2001,

the libraries and components that I created were written in assembly and closely tied to

a single target device. Assembly language compilers were freely offered in those days,

and the preferred C compilers cost several thousand dollars, with no code-size limitation

trials. (The microcontrollers I was using did not have a GCC variant available at that

time).

The fortunes of time have thankfully made C compilers more readily available, and

assembly language code has gone nearly the way of the dinosaurs. What is perhaps far

more interesting about this tale is that this early interest in developing modular and

reusable components in assembly language found its way into my professional career

developing embedded software in C/C++. The result has been a steadily improving

set of techniques, APIs, HALs, components, and design patterns that can be applied to

resource-constrained embedded systems.

As a consultant and technical educator, each year I work with companies by the

dozens and engineers by the thousands who struggle to develop portable and reusable

embedded software. Many efforts are repeated from one project to the next, resulting in

wasted time, effort, money, and potential to innovate.

xx

One of my hopes with this book and the associated API and HAL Standard is to

share my experiences and provide a framework that other developers may leverage and

use in their own development efforts. My goal is that readers won’t just become better

developers but will also be able to keep pace with the demanding modern development

cycle and still have time to innovate and push the envelope.

Implementing the processes and techniques contained in this book should help any

developer decrease their development costs and time to market while improving the

portability and reliability of their software. At a minimum, developers will find that they

no longer need to keep reinventing the wheel every time a new project starts.

Happy coding,

Jacob Beningo

September 2017

Preface

xxi

Introduction

Since the turn of the twenty-first century, microcontroller-based systems have become

extremely complex. Microcontrollers started out as simple 8-bit devices running at

bus speeds in the 8 MHz to 48 MHz range. Since then, microcontrollers have become

complex and powerful 32-bit devices running at clock speeds faster than 200 MHz

with every imaginable peripheral, including USB, TCP/IP, and Wi-Fi, and some

microcontrollers now even have an internal cache. This dramatic explosion of capability

and complexity has left the embedded software developer scrambling to understand

how to do the following:

•	 Shorten time to market

•	 Keep budgets under control

•	 Get to market on time

•	 Manage their system’s complexity

•	 Meet the client’s feature and innovation needs

Traditionally, many embedded systems were written in such a way that the code was

used once, on a single platform, and then tossed out. Software, for the most part, could

be referred to as spaghetti code and did not follow any object-oriented or software-reuse

model. In today’s development environment, developers need to write their software

with reusability and portability in mind. The teams that are the most successful can

leverage existing intellectual property and quickly innovate on it.

The purpose of this book is to help the embedded software engineer learn and

understand how they can develop reusable firmware that can be used across multiple

microcontroller platforms and software products. The fundamental pieces to firmware

reuse that we will be focusing on are HALs, APIs, and drivers. These are the core pieces

that will allow us to develop a layered software architecture and define how those

different layers interact with each other.

Chapters 1 through 5 lay the foundation on which a developer can start writing

reusable firmware. In these chapters, we examine the C constructs that best lend

themselves to portability and define what a hardware abstraction layer (HAL) is and

xxii

how it differs from application programming interfaces (APIs). We will discuss different

design methodologies developers can use to write low-level drivers and examine

the design patterns, along with their pros and cons. Along the way, we’ll look at real-

world examples and even take a chapter to discuss how reusable firmware should be

documented.

With the foundation laid, Chapters 6 through 10 examine the processes that can be

followed to create HALs and APIs. We examine common elements, such as GPIO, SPI,

and external memory devices, before moving on to looking at high-level application

frameworks that can aid reuse and accelerate software design.

Chapter 11 discusses how developers should develop tests to ensure that their

reusable software remains usable with a minimal bug count. Finally, Chapter 12 walks

developers through how they can start developing reusable software no matter the

environment or challenges that they may be facing and how they can succeed in those

environments.

The chapters don’t necessarily need to be read in order, but they are put together in

an order that builds upon what came before. A developer with reasonable experience

developing reusable software could easily skip around whereas developers new to

writing reusable software should read the chapters in order.

Introduction

1
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_1

CHAPTER 1

Concepts for Developing
Portable Firmware

“A good scientist is a person with original ideas. A good engineer is a person
who makes a design that works with as few original ideas as possible.”

—Freeman Dyson

�Why Code Reuse Matters
Over the past several decades, embedded systems have steadily increased in complexity.

The internet’s birth has only accelerated the process as our society has been in a race to

connect nearly every device imaginable. Systems that were once simple and stand-alone

must now connect through the internet in a secure and fail-safe manner in order to

stream critical information up into the cloud. Complexity and features are increasing at

an exponential rate, with each device generation forcing engineers to reevaluate how to

successfully develop embedded software within the allotted time frame and budget.

The increased demand for product features, along with the need to connect systems

to the internet, has dramatically increased the amount of software that needs to be

developed to launch a product. While software complexity and features have been

increasing, the time available to develop a product has for the most part remained

constant, with a negligible increase in development time (two weeks in five years), as can

be seen in Figure 1-1. In order to meet project timelines, developers are forced to either

purchase commercial off-the-shelf (COTS) software that can decrease their development

time or reuse as much code as possible from previous projects.

2

Firmware for microcontrollers has conventionally been developed for a specific

application using functional design methodologies (if any methodology has been

used at all) that typically tie the low-level hardware directly into the application code,

making the software difficult if not impossible to reuse and port on the same hardware

architectures let alone reuse on a different architecture. The primary driving factor

behind developing throw-away firmware has been the resource-constrained nature

many embedded products exhibit. Microcontrollers with RAM greater than a few

kilobytes and flash sizes greater than 16 kB were once expensive and could not be

designed into a product without destroying any hope of making a profit. Embedded-

software developers did not have large memories or powerful processors to work with,

which prevented modern software-design techniques from being used in application

development.

Modern microcontrollers are beginning to change the game. A typical low-end ARM

Cortex-M microcontroller now costs just a few U.S. dollars and offers at a minimum 16

kB of RAM and 64 kB of flash. The dramatic cost decreases in memory, larger memory

availability, and more efficient CPU architectures are removing the resource-constrained

nature that firmware developers have been stuck with. The result is that developers

Figure 1-1.  Average firmware project development time (in months)1

1�Embedded Marketing Study, 2009 – 2015, UBM

Chapter 1 Concepts for Developing Portable Firmware

3

can now start utilizing design methods that decouple the application code from the

hardware and allow a radical increase in code reuse.

�Portable Firmware
Firmware developed today is written in a rather archaic manner. Each product-

development cycle results in limited to no code reuse, with reinvention being a major

theme among development teams. A simple example is when development teams refuse

to use an available real-time operating system (RTOS) and instead develop their own

in-house scheduler. Beyond wanting to build their own custom scheduler, there are two

primary examples that demonstrate the issue with reinvention.

SOFTWARE TERMINOLOGY

Portable firmware is embedded software that is designed to run on more than one

microcontroller or processor architecture with little or no modification.

First, nearly every development team writes their own drivers because

microcontroller vendors provide only example code and not production-ready drivers.

Examples provide a great jump-start to understanding the microcontroller peripherals,

but it still requires a significant time investment to get a production-intent system.

There could be a hundred companies using the exact same microcontroller, and each

and every one will waste as much as 30 percent or more of their total development time

getting their microcontroller drivers written and integrated with their middleware! I

have seen this happen repeatedly among my client base and have heard numerous

corroborating stories from the hundreds of engineers I interact with on a yearly basis.

Second, there are so many features that need to be packed into a product, and with

a typical design cycle being twelve months,1 developers don’t take the time to properly

architect their systems for reuse. High-level application code becomes tightly coupled

to low-level microcontroller code, which makes separating, reusing, or porting the

application code costly, time consuming, and buggy. The end result—developers just

start from scratch every time.

Chapter 1 Concepts for Developing Portable Firmware

4

In order to keep up with the rapid development pace in today’s design cycles,

developers need to be highly skilled in developing portable firmware. Portable firmware

is embedded software that is designed to run on more than one microcontroller or

processor architecture with little to no modification. Writing firmware that can be ported

from one microcontroller architecture to the next has many direct advantages, such as:

•	 Decreasing time to market by not having to reinvent the wheel

(which can be time consuming)

•	 Decreasing project costs by leveraging existing components and

libraries

•	 Improving product quality through use of proven and continuously

tested software

Portable firmware also has several indirect advantages that many teams overlook but

that can far outweigh the direct benefits, such as:

•	 More time in the development cycle to focus on product innovation

and differentiation

•	 Decreased team stress levels due to limiting how much total code

needs to be developed (happy, relaxed engineers are more innovative

and efficient)

•	 Organized and well-documented code that can make porting and

maintenance easier and more cost effective

Using portable and reusable code can result in some very fast and amazing results, as

seen in the case study “Firmware Development for a Smart Solar Panel,” but there are also

a few disadvantages. The disadvantages are related to upfront time and effort, such as:

•	 The software architecture’s needing to be well thought through

•	 Understanding potential architectural differences between

microcontrollers

•	 Developing regression tests to ensure porting is successful

Chapter 1 Concepts for Developing Portable Firmware

5

•	 Selecting real-time languages and understanding their

interoperability or lack thereof

•	 Having experienced and high-skilled engineers available to develop a

portable and scalable architecture

For development teams to successfully enjoy the benefits of portable code use,

extra time and money needs to be spent up-front. However, after the initial investment,

development cycles have a jump-start to potentially decrease development time by

months versus the traditional embedded-software design cycle. The long-term benefits

and cost savings usually overshadow the up-front design costs, along with the potential

to speed up the development schedule.

Developing firmware with the intent to reuse also means that developers may

be stuck with a single programming language. How does one choose a language for

software that may stick around for a decade or longer? Using a single programming

language is not a major concern in embedded-software development, despite what one

might initially think. The most popular embedded language, ANSI-C, was developed in

1972 and has proven to be nearly impossible to usurp. Figure 1-2 shows the popularity

of programming languages used in embedded systems. Despite advances in computer

science and the development of object-oriented programming languages, C has

remained very popular as a general language and is heavily entrenched in embedded

software.

Chapter 1 Concepts for Developing Portable Firmware

6

The C programming language’s popularity and steady use doesn’t appear to

be changing anytime soon. When and if the Internet of Things (IoT) begins to gain

momentum, C may even begin to grow in its use and popularity as millions of devices

are developed and deployed using it. Developing portable and reusable software

becomes a viable option when one considers the steady and near-constant use that

the C language has enjoyed in the industry for developing embedded systems. When

a development team considers the timelines, feature needs, and limited budgets for

the product-development cycle, developing portable code should be considered a

mandatory requirement.

C C++ Assembly Python Java Matlab Other

Figure 1-2.  Embedded-software programming language use2

2�Aspencore Embedded Systems Survey, 2017, www.embedded.com

Chapter 1 Concepts for Developing Portable Firmware

7

CASE STUDY—FIRMWARE FOR A SMART SOLAR PANEL

When it comes to product development, the single constant in the universe is that the

development either needs to be done yesterday or by some not-so-distant future date.

A few years ago, on December 1, I received a call from a prospective client I had been talking

with for the better part of the year. The client, a start-up in the small satellite industry, had

just received news that they had an opportunity to fly their new flagship spacecraft on an

upcoming launch. The problem was that they had just six weeks to finish building, testing, and

delivering their satellite!

One of the many hurdles they faced was that their smart solar panels (smart because they

contained a plethora of sensors critical to stabilizing the spacecraft) didn't have a single line

of firmware written. The solar panels’ firmware had to be completed by January 1, leaving just

four weeks over a holiday month to design, implement, test, and deploy the firmware.

To give some quantification to the project scope, the following are some of the software

components that needed to be included:

•	 GPIO, SPI, I2C, PWM, UART, Flash, ADC

•	 Timer and system tick

•	 H-bridge control

•	 Task scheduler

•	 Accelerometer

•	 Magnetometer

•	 Calibration algorithms

•	 Fault recovery

•	 Health and wellness monitoring

•	 Flight computer communication protocol

An experienced developer knows the preceding list would be impossible to successfully

complete in four weeks from scratch. I2C alone could take two weeks to develop, and the

realistic delivery date for the project would be three to four months, not weeks.

Chapter 1 Concepts for Developing Portable Firmware

8

I accepted the project and leveraged the very same HAL and driver techniques presented in

this book to complete the project. A day was spent pulling in existing drivers and making minor

modifications for the microcontroller derivative. The second week was spent pulling together

the application code and remaining drivers. Finally, week three was test, debug, and deliver—

just in time for Christmas and to the client’s delight.

The decision to develop portable firmware should not be taken lightly. In order

to develop truly portable and reusable firmware, there are a few characteristics that a

developer should review and make sure that the firmware will exhibit. First, the software

needs to be modular. Writing an application that exists in a single source file is not an

option (yes, I still see this done even in 2016). The software needs to be broken up into

manageable pieces with minimal dependencies between modules and similar functions

being grouped together.

10 QUALITIES OF PORTABLE FIRMWARE

Portable Firmware …

	1.	 is modular

	2.	 is loosely coupled

	3.	 has high cohesion

	4.	 is ANSI-C compliant

	5.	 has a clean interface

	6.	 has a hardware abstraction layer (HAL)

	7.	 is readable and maintainable

	8.	 is simple

	9.	 uses encapsulation and abstract data types

	10.	 is well documented

Portable software should follow the ANSI-C programming language standard.

Developers should avoid using compiler intrinsics and C extensions, because they are

compiler specific and will not easily port between tool chains. In addition to avoiding

Chapter 1 Concepts for Developing Portable Firmware

9

these add-ons, developers should select a safe and fully specified subset for the C

programming language. Industry-accepted standards such as MISRA-C or Secure C

might be good options to help ensure that the firmware will use safe constructs.

Developers will want to make sure that the reusable code is also well documented

and contains detailed examples. The firmware needs to have a clean interface that is

simple and easy to understand. Most important, developers will want to make sure that

a simple, scalable hardware-abstraction layer is included in the software architecture.

The hardware-abstraction layer will define how application code interacts with the

lower underlying hardware. Let’s examine in greater detail a few key characteristics that

portable firmware should exhibit before diving into hardware-abstraction layers.

�Modularity
On more than one occasion over the last several years, I have worked with a client whose

entire application, 50,000-plus lines of code, was contained within a single main.c

module. Attempts to maintain the software or reuse pieces of code quickly turned into

a nightmare. These applications were still using software techniques from back in the

1970s and 1980s, which was not working out so well for my client.

Modularity emphasizes that a program’s functionality should be separated into

independent modules that may be interchangeable. Each module contains a header

and source file with the ability to execute specialized system functions that are exposed

through the module’s interface. The primary benefit of employing modularity in an

embedded system is that the program is broken up into smaller pieces that are organized

based on purpose and function.

Ignoring the preceding facts and lumping large amounts of code into a single

module, even if it is well organized or makes sense in the beginning, usually results in

a decay into a chaos and a software architecture that resembles spaghetti. Breaking

a program up into separate modules is so important when developing portable and

reusable firmware because the independence each module exhibits allows it to be easily

moved from one application to the next, or in some cases even from one platform to the

next. There are a few advantages associated with breaking a program up into modular

pieces, such as:

•	 Being able to find functions or code of interest very quickly and easily

•	 Improved software understanding through the modules’ organization

Chapter 1 Concepts for Developing Portable Firmware

10

•	 The ability to copy modules and use them in new applications

•	 The ability to remove modules from a program and replace them with

new functionality

•	 Easing requirements’ traceability

•	 Developing automated regression testing for individual modules and

features

•	 Overall decreased time to market and development costs

Each module added to a program does come with the disadvantage that the

compiler will need to open, process, compile, and close the module. The result in the

“old days” would have been slower compilation times. Development machines today

are so fast and efficient that increased compile time is no longer an excuse for writing

bulking, clunky code.

�Module Coupling and Cohesion
Breaking a program up into smaller, more manageable pieces is a good step forward

toward developing portable firmware, but it is only the first step. For a module to be truly

portable, it must exhibit low coupling to other modules within the code base and a high

level of cohesion. Coupling refers to how closely related different modules or classes are

to each other and the degree to which they are interdependent. The higher the coupling,

the less independent the module is.

Portable software should minimize the coupling between modules to make it

easier to use in more than one development environment. Take, for example, the file-

dependency chart in Figure 1-3. Attempting to bring the top-level module into the code

base will be a small nightmare, like peeling an onion. The top module will be brought in,

only for the developer to realize that it is dependent upon another, which is dependent

upon another and another and so on. In short order, the developer might as well have

just brought in the entire application or simply started from scratch. Attempting to

use modules that are tightly coupled is very frustrating and can cause the code size to

balloon out of control if care is not taken.

Chapter 1 Concepts for Developing Portable Firmware

11

The software base in Figure 1-3a shows a completely different story. The modules in

Figure 1-3b are loosely coupled. A developer attempting to bring in a top-level module won’t

be fraught with continuous compiler errors of missing files or spend hours on end trying to

track down all the dependencies. Instead, the developer quickly moves the loosely coupled

module into the new code base and is on to the next task with little to no frustration. Low

coupling is the result of a well-thought-out and well-structured software design.

SOFTWARE TERMINOLOGY

Coupling refers to how closely related different modules or classes are to each other and the

degree to which they are interdependent.

Cohesion refers to the degree to which module elements belong together.

Module coupling is only the story’s first part. Having low module coupling doesn’t

guarantee that the software will exhibit easily portable traits. The goal is to have a module

that has low coupling and high cohesion. Cohesion refers to the degree to which the

module elements belong together. In a microcontroller environment, a low-cohesion

example would be lumping every microcontroller peripheral function into a single module.

The module would be large and unwieldy. The microcontroller peripheral functions

could instead be broken up into separate modules, each with functions specific to one

peripheral. The results would be the benefits listed in the previous section on modularity.

Figure 1-3.  Module coupling

Chapter 1 Concepts for Developing Portable Firmware

12

Portable and reusable software attempts to create modules that are loosely coupled

and have high cohesion. Modules with these characteristics are usually easy to reuse and

maintain. Consider what would happen in a tightly coupled system if a single module

were changed. A single change would result in changes being forced in at least one other

module, if not more, and it could be time consuming to hunt down all the necessary

changes. Failure to make the change or a simple oversight could result in a bug, which in

the worst case could cause project delays and increased costs.

�Following a Standard
Creating firmware that is portable and reusable can be challenging. For example, the C

language has gone through several different standard revisions: C90, C99, and C11. In

addition to the different C versions, there also exist non-standard language extensions,

compiler additions, and even language offshoots. To develop firmware that is reusable

to the greatest extent possible, a development team needs to select a widely accepted

standard version, such as C90 or C99. The C99 version has some great additions that

make it a good choice for developers. At the time of this writing, there is limited support

for C11 in firmware development, and C11 is five years old! Adopting C99 is the best bet

for following a standard.

The long-term support for C and its general-purpose use has resulted in language

extensions and non-standard versions that need to be avoided. Using any construct

that is not in the standard will result in specialized modifications to the code base that

can obfuscate the code. Sometimes using extensions or an intrinsic is unavoidable due

to optimization needs, but we will discuss later how we can still write portable code in

these circumstances.

In addition to using the C standard, developers should also restrict their use to well-

defined constructs that are easy to understand and maintain and are fully specified. For

example, standards such as MISRA-C and Secure-C exist to provide recommendations

on a C subset and they should be used to develop firmware. MISRA-C was developed for

the automotive industry, but the recommendations have proven to be so successful at

producing quality software that other industries are adopting the recommendations.

Developers should not view a standard as a restriction but instead as a method for

improving the quality and portability of the firmware that they develop. Identifying and

following standard C dialects will take developers a long way in developing reusable

Chapter 1 Concepts for Developing Portable Firmware

13

firmware. Recognizing the need to follow the ANSI-C standard and having the discipline

to follow it will guide a development team toward creating embedded software that can

be reused for years to come.

�Portability Issues in C—Data Types
The most infamous and well-known portability issues in the C programming language

are related to defining the most commonly used data type, the integer. One needs only

to ask a simple question to demonstrate a potential portability issue: What will be the

value LoopCount contains when i rolls over to 0? The demonstration code that contains

LoopCount can be found in in Figure 1-4.

Figure 1-4.  Integer rollover test

The answer could be 65,535 or 4,294,967,295. Both answers could be correct. The

reason is that the storage size for an integer is not defined within the ANSI-C standard.

The compiler vendors have the choice to define the storage size for the variable based on

what they deem will be the most efficient and/or appropriate.

The storage size for an integer normally wouldn’t seem like a big deal. For a code

base an int will be an int, so who cares? The problem surfaces when that same code

is compiled using a different compiler. Will the other compiler store the variable as the

same size or different? What happens if it was stored as four bytes and now is only two?

Perfectly working software is now buggy!

The portability issues arising from integers, the most commonly used data type, are

solved in a relatively simplistic way. The library header file stdint.h defines fixed-width

integers. A fixed-width integer is a data type that is based on the number of bits required

to store the data. For example, a variable that needs to store unsigned data that is 32 bits

Chapter 1 Concepts for Developing Portable Firmware

14

wide doesn’t need to gamble on int being 32 bits, but instead a developer can simply

use the data type uint32_t. Fixed-width integers exist for 8, 16, 32, and in some cases

even 64 bits. Table 1-1 shows a list of the different fixed-width integer definitions that can

be found in stdint.h.

Table 1-1.  Fixed-Width Integers3

Data Type Minimum Value Maximum Value

int8_t -128 127

uint8_t 0 255

int16_t -32,768 32,767

uint16_t 0 65535

int32_t -2,147,483,648 2,147,483,647

uint32_t 0 4,294,967,295

The library file stdint.h doesn’t contain just the data types found in Table 1-1 but

also a few interesting and less-known gems. Take, for example, uint_fastN_t, which

defines a variable that is the fastest to process at least N bits wide. A developer can

tell the compiler that the data must be at least 16 bits but could be 32 bits if it can be

processed faster using a larger data type. Another great example is uintmax_t, which

defines the largest fixed-width integer possible on the system. A personal favorite is

uintptr_t, which defines a type that is wide enough to store the value of a pointer.

Using stdint.h is an easy way to help ensure that embedded-software integer types

preserve their storage size no matter which compiler the code may be compiled on. It is

a simple and safe way to ensure that integer data types are properly preserved.

�Portability Issues in C—Structures and Unions
The C standards have some unfortunate ambiguities in the definition of certain language

constructs; take, for example, structures and unions. A developer can declare a structure

containing three members, x, y, and z, as shown in Figure 1-5. As one might expect,

3�ISO/IEC 9899:1999, C Language Specification

Chapter 1 Concepts for Developing Portable Firmware

15

when a variable is declared of type Axis_t, the data members will be created in the order

x, y, and z in memory. However, the C standard does not specify how the data members

will be byte aligned. The compiler has the option to align the data members in any way

that it chooses. The result could be that x, y, and z occupy contiguous memory, or there

could be padding bytes added between the data members that space the members

by two, four, or some other byte value that would be completely unexpected by a

programmer.

Figure 1-5.  Structure definition

The unspecified structure and union behavior makes it the developer’s job when

porting the firmware to understand how the structure is being defined in memory and

whether the structure is being used in such a way that adding padding bytes could affect

the application’s behavior or performance. The structure could include padding bytes

or even holes depending on the data type being defined and how the compiler vendor

decided to handle the byte alignment.

�Portability Issues in C—Bit Fields
The situation with structures gets even worse when it comes to the definition of bit fields.

Bit fields are declared within a structure and are meant to allow a developer to save

memory space by tightly packing data members that don’t occupy an entire data space.

An example of using bit fields is to declare a flag within a structure that has a true or false

value, as shown in Figure 1-6.

Chapter 1 Concepts for Developing Portable Firmware

16

The problem with bit fields is that the implementation is completely undefined by

the standard. The compiler implementers get to decide how the bit field will be stored

in memory, including byte alignment and whether the bit field can cross a memory

boundary. Another problem with bit fields is that while they may appear to save

memory, the resulting code required to access the bit field may be large and slow, which

can affect the real-time performance of accessing it. The general recommendation when

it comes to bit fields is that they are non-portable and compiler dependent and should

be avoided for use in firmware that is meant to be reusable and portable.

�Portability Issues in C—Preprocessor Directives
All preprocessor directives are not created equal. A developer will have different

preprocessor directives available depending on whether GNU C, IAR Embedded

Workbench, Keil uVision, or any other compiler is used. ANSI-C has a limited number

of preprocessor directives that are included in the standard and can be considered

portable.

Compiler vendors have the ability to add preprocessor directives that are not part of

the standard. For example, #warning is a commonly used preprocessor directive that is

not supported by C90 or C99! The #error preprocessor directive is part of the standard,

and #warning was added by compiler vendors to allow a developer to raise a compilation

warning. Developers who rely heavily on #warning may port code to a compiler that

doesn’t recognize #warning as a valid preprocessor directive or may recognize it as

having a different purpose!

Figure 1-6.  Bit field definition

Chapter 1 Concepts for Developing Portable Firmware

17

A developer interested in writing portable code needs to be careful about which

preprocessor directives are used within the embedded software. The most obvious non-

portable preprocessor directive is #pragma, which can generally be considered to declare

implementation-defined behaviors within an application. The use of #pragma should be

avoided as much as possible within an application that is expected to be ported to other

tool chains.

Using #pragma or other specialized preprocessor directives and attributes cannot

always be avoided without dramatically increasing code complexity and structure. One

example where #pragma may be necessary is to specify an optimization that should

be performed on an area of code. A developer in a similar situation can use compiler-

predefined macros and conditional compilation to ensure that the code is optimized

and that if it is ever ported to another compiler an error is raised at compile time. Each

compiler has its own set of predefined macros, including a macro that can be used to

identify the compiler that is in use. Figure 1-7 shows an example of a compiler-defined

macro that may be of interest to a developer.

Figure 1-7.  Compiler-defined macros

The predefined macros from Figure 1-7 that identify the compiler can be used as part

of a preprocessor directive to conditionally compile code. Each compiler that may be

used can then be added to the conditional statement with the non-portable preprocessor

directive that is needed for the task at hand. Figure 1-8 shows how a developer might

take advantage of the predefined compiler macros to conditionally compile a fictitious

#pragma statement into a code base.

Chapter 1 Concepts for Developing Portable Firmware

18

Developers interested in writing portable ANSI-C code should consult the ANSI-C

standard, such as C90, C99, or C11, and check the appendices for implementation-

defined behaviors. A developer may also want to consult their compiler manuals to

determine the extensions and attributes that are available to developers.

�Embedded-Software Architecture
Firmware development in the early days used truly resource-constrained

microcontrollers. Every single bit had to be squeezed from both code and data memory

spaces. Software reusability was a minor concern, and programs were monolithically

developed. The programs would be one giant 50,000-line program, all contained within

a single module, with little to no thought given to architectural design or reuse. The only

goal was to make the software work. Thankfully, times have changed, and while many

microcontroller applications remain “resource constrained,” compiler capabilities and

decreasing memory costs now allow for a software architecture that encourages reuse.

Developing software that is complex, scalable, portable, and reusable requires a

software architecture. A software architecture is the fundamental organization a system

embodies in its components, their relationship to each other and to the environment,

and the principles guiding its design and evolution.4 In other words, a software

architecture is the blueprint from which a developer implements software. A software

architecture is literally analogous to the blueprint an architect would use to design a

building or a bridge.

Figure 1-8.  Using conditional compilation for non-portable constructs

4�ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture

Chapter 1 Concepts for Developing Portable Firmware

19

The software architecture provides a developer with each component and major

software structure, supplies constraints on their performance, and identifies their

dependencies and interactions (the inputs and outputs). For our purposes, we will only

be looking at software architecture from the perspective of organizing firmware into

separate software layers that have contractually specified interfaces to improve portability

and code reuse. Each software has a specific function, such as directly controlling the

microcontroller hardware, running middleware, or containing the system’s application

code. Properly architected software can provide developers with many advantages.

First, a layered architecture can provide a functional boundary between different

components within the software. Take, for example, low-level driver code that makes the

microcontroller work. Including driver code directly within the application code tightly

couples the microcontroller to the application code. Since application code normally

contains algorithms that may be used across multiple products, mixing in low-level

microcontroller code will make it difficult and time consuming to reuse the code. Instead,

a developer who architects layered software can separate the application and low-level

code, allowing both layers to be reused in other applications or on different hardware.

Second, a layered architecture hints at the locations where interfaces within the

software need to be created. For a development team to create firmware that can be

reused, there needs to be an identifiable boundary where an interface can be created

that remains consistent and unchanging as time passes. The interface contains

declarations and function prototypes for controlling software in lower layers.

Third, a layered architecture allows information within the application to be hidden

from other areas that may not need access to it. Consider the example with the low-level

driver. Does the application code really need to know the implementation details for

how the driver works? Surely, someone working at the application level would rather

have a simple function to call, with the desired result happening behind the scenes.

This is the idea behind abstractions, which hide the implementation behavior from the

programmer and simply provide them with a black box. Developing a simple software

architecture can help developers take advantage of these benefits.

Developers looking to create portable firmware that follows a layered software-

architecture model have many different possible models that can be chosen from and

many custom hybrid models that they could undoubtedly develop. The simplest layered

architecture can be seen in Figure 1-9 and contains a driver and application layer

operating on the hardware. The driver layer includes all the code necessary to get the

microcontroller and any other associated board hardware, such as sensors, buttons, and

so forth, running. The application code contains no driver code but has access to the

Chapter 1 Concepts for Developing Portable Firmware

20

low-level hardware through a driver-layer interface that hides the hardware details from

the application developer but still allows them to perform useful functions.

Figure 1-10.  Three-layer embedded-software architecture

Figure 1-9.  Two-layer embedded-software architecture

The next model that a developer could choose to implement breaks the software

up into three layers, similar to Figure 1-10. In a three-layer model, the driver and

application layers still exist, but a third “middle” layer has been added. The middle layer

may contain software such as a real-time operating system (RTOS), USB and/or Ethernet

stacks, along with file systems. The middle layer contains software that isn’t directly the

end application code but also does not drive the low-level hardware. For this reason,

components in this layer are often referred to as middleware.

Beyond the three-layer model, developers may find it worthwhile to start breaking

the software up into more refined layers of operation and maybe even provide pathways

for high-level layers to circumvent layers and get direct access into lower software layers.

The architectures can become quite complex and are well beyond the scope of this

book. For now, a four-layer model will be as complex an example as we will examine.

For example, a developer may decide that the board-support package—the integrated

circuits outside of the microcontroller—should be separated from the microcontroller

driver layer. The board-support drivers are usually dependent on the microcontroller

drivers anyway, and in order to improve portability probably should be separated. Doing

this results in one possible four-layer model like the one shown in Figure 1-11.

Chapter 1 Concepts for Developing Portable Firmware

21

Many formal models exist for developing layered software architectures, including

the well-known OSI model, which contains over seven layers. A developer should

examine their requirements and their portability and reuse needs and pick the simplest

architecture that can meet their requirements. Don’t be tempted to build a 30-layer

software architecture if three layers will meet the requirements! The goal is to avoid

complex spaghetti code that is intertwined and entangled and instead develop layered

lasagna code! (Just the thought makes my stomach growl!)

�Hardware Abstraction Layers (HAL)5

Each software layer has at least one interface to an adjoining software layer. The software

type that is contained within the next layer determines the name given to the interface.

Each layer, if developed properly, can appear as a black box to the developer, and only

the interface specification provides insight into how to get the needed behavior and

result. The interface has many benefits, such as the following:

•	 Providing a consistent method for accessing features

•	 Abstracting out the details for how the underlying code works

•	 Specifying wrapper interfaces for how to merge inconsistent code to

the software layer

The most interesting firmware layer that developers now have the ability to utilize is

the hardware abstraction layer (HAL). A HAL is an interface that provides the application

developer with a standard function set that can be used to access hardware functions

Figure 1-11.  Four-layer embedded-software architecture

5�http://whatis.techtarget.com/definition/layering

Chapter 1 Concepts for Developing Portable Firmware

22

without a detailed understanding of how the hardware works. Despite being commonly

referred to as a HAL, it is not the infamous artificial intelligence from 2001: A Space

Odyssey, although sometimes they can be just as devious.

HALs are essentially APIs designed to interact with hardware, and a properly

designed HAL provides developers with many benefits, such as software that

•	 is portable

•	 is reusable

•	 has a lower cost (result of reuse)

•	 is abstracted (I don’t need to know how the microcontroller does

what it does)

•	 has fewer bugs due to repeated use

•	 is scalable (moving to other MCUs within a part family)

SOFTWARE TERMINOLOGY

Driver Layer refers to the software layer that contains low-level, microcontroller-specific

software. The driver layer forms the basis from which higher-level software interacts with and

controls the microcontroller.

Board-Support Package refers to driver code that is dependent upon lower-level

microcontroller driver code. These drivers usually support external integrated circuits such as

EEPROM or flash chips.

Middleware refers to the software layer that contains software dependent upon the lower-

lying hardware drivers but does not directly contain application code. Application code is

usually dependent upon the software contained within this middle layer of software.

Application Layer refers to a software layer used for system- and application-specific

purposes that is decoupled from the underlying hardware. The application code meets

product-specific features and requirements.

Configuration Layer refers to a software layer used to configure components within the layer.

Chapter 1 Concepts for Developing Portable Firmware

23

A poorly designed HAL can result in increased costs and buggy software and can

leave the developer wishing that they were dealing with the previously mentioned

infamous HAL. An example software architecture that utilizes a HAL might look

something like Figure 1-12. We will be discussing HAL design throughout the book.

Figure 1-12.  Software architecture with a HAL

6�http://whatis.techtarget.com/definition/interface

SOFTWARE TERMINOLOGY

Hardware abstraction layer (HAL) refers to a firmware layer that replaces hardware-level

accesses with higher-level function calls.

Application programming interface (API) refers to functions, routines, and libraries that are

used to accelerate application software development.

�Application Programming Interfaces (APIs)6

Application programming interfaces, often referred to as APIs, are a set of functions,

routines, and libraries that are used to accelerate application software development.

APIs are usually developed at the highest software layers. There are many cases where

developers will use the term API to include the HAL, since the HAL is really a specialized

API designed to interact with hardware. An example where the API might exist in a

software stack can be seen in Figure 1-13.

Chapter 1 Concepts for Developing Portable Firmware

24

A specific application may have multiple middleware components, such as an

RTOS, TCP/IP stack, file system, and so forth. Each component may have their very

own API associated with their software package. There could even be application-level

components that have their own APIs in order to facilitate speedy development. The rule

of thumb is that wherever you see two software layers touch, there is an interface there

that defines an API or HAL.

�Project Organization
Organizing a project can help improve both portability and maintainability. There are

many ways that developers can organize their software, but the easiest is to attempt to

follow the software layer stack-up. Creating a file system and project folder structure that

matches the layers makes it easy to simply replace a folder (a layer) with new software,

which would also include the components within that layer.

The project should also be organized in such a way within each layer that modules,

tasks, and other relevant code are easily locatable. Some developers like to create folders

for modules or components and keep all configuration, header, and source modules

within the folders. Organizing the software in this way makes it very easy to add and

remove software modules. Other developers prefer to break up and keep header and

source files separate. The method used is not important so much as being consistent and

following a methodology is.

Figure 1-13.  Architecture with application programming interfaces (APIs)

Chapter 1 Concepts for Developing Portable Firmware

25

The following is an example organization that a developer may decide to implement

to organize their project:

•	 Drivers

•	 Application

•	 Task Schedulers

•	 Protocol Stacks

•	 Configuration

•	 Supporting Files and Docs

�Getting Started Writing Portable Firmware
Developers who want to reuse software have several challenges to overcome in order to

be successful. These include:

•	 Endianness

•	 Processor architecture

•	 Bus width

•	 Ambiguous standards

•	 Development time and budget

•	 Modularity

•	 Code coupling

This is just to name a few. Getting started can be overwhelming and can lead to more

stress and confusion than simply writing very functional code that is discarded later. The

key to successfully developing portable code is to determine how well your firmware

currently meets the portable software characteristics. Once we understand where we are,

we can decide where we want to go and set in motion the steps necessary to get there.

To determine where we are today with developing portable firmware, start by

drawing a diagram like that shown in Figure 1-14. In the diagram, label each spoke

with a portable firmware characteristic and select the eight characteristics most

important to you.

Chapter 1 Concepts for Developing Portable Firmware

26

In each identified category, a developer can evaluate how well their code exhibits

these properties. For example, a developer who has been trying to transition into writing

more portable code may evaluate themselves with a diagram result like Figure 1-15.

A quick look at Figure 1-15 can tell a developer a lot of information. First, we have

strengths in documentation and modularity. That’s a great step toward developing

portable firmware, and we are just getting started. The figure also shows us where our

weaknesses are, such as code coupling and cohesion.

From this glance, we can now determine where we should focus our attention.

Which characteristic, if improved by just a couple points, will most drastically improve

our code? Let’s choose code coupling as an example. If a developer is going to improve

code coupling, they need to determine how they are going to go about making that

improvement. They might decide that the best way to do this is to do one or more of the

following:

•	 Schedule code reviews

•	 Find a tool that can provide a module-dependency graph

•	 Use the dependency-graph tool (just because we have a tool doesn’t

mean we have the discipline to use it)

•	 Develop a high-level architecture that considers module coupling

Figure 1-14.  Portable code evaluation

Chapter 1 Concepts for Developing Portable Firmware

27

Figure 1-15.  Evaluated firmware characteristics

A developer may decide that improving in one area is good enough to start or that all

need to be done. The point is that we aren’t going to start writing perfect, reusable code

overnight. The process is iterative and may take a few years before all the rough edges are

smoothed, but that is okay.

The following is a simple process that developers can use to improve their firmware

portability:

	 1.	 Analyze their code characteristics.

	 2.	 Identify strengths and weaknesses.

	 3.	 Determine which characteristic to improve in the next three

months.

	 4.	 Identify what can be done to make the incremental improvement.

	 5.	 Implement the improvement.

	 6.	 After the specified period, repeat.

Chapter 1 Concepts for Developing Portable Firmware

28

�Going Further
Reading about portable and reusable code is one thing; actually doing it is a completely

different story. The following are some suggestions on steps you can take to start

developing firmware that is more portable:

•	 Select the language standard that will be used for your development

effort(s) and spend 30 minutes each day reading through the

language standard. Note areas that are not fully defined or could

become pain points.

•	 Select two or three compilers, such as GCC, Keil, and IAR. Download

their user manuals and review the documentation on how they

implemented the ambiguous areas in the selected standard.

•	 Purchase a copy of MISRA C/C++ and become familiar with the

recommended best practices.

•	 Develop your own coding standard on the constructs that are allowed

within an application and how compiler intrinsics and extensions

should be handled.

•	 Review your typical software architecture. Does it have well-defined

layers? Does each layer have a well-defined interface? If not, now is

the perfect time to spend a few minutes architecting your firmware

stack-up. (Don’t be concerned with defining the interface just yet.

We’ll be covering how to do this in the coming chapters.)

•	 Review the last section on “Getting Started Writing Portable

Firmware.” On a sheet of paper, draw your own spider diagram

and rank how well your code exhibits the portable-firmware

characteristics. Select one or two characteristics that you feel will

have the biggest impact on your code and focus on improving those.

Periodically review and reevaluate.

Chapter 1 Concepts for Developing Portable Firmware

29
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_2

CHAPTER 2

API and HAL
Fundamentals

“Software is a great combination between artistry and engineering.”

—Bill Gates

�The Wonderful World of HALs
There are many tools that embedded-software developers can use to develop software

consistently, but the greatest tools available to improve code reuse and portability are

APIs and HALs. Designing a HAL is a great first step toward developing firmware that is

reusable and hardware independent. The HAL, or hardware abstraction layer, provides

the application developer with a standard function set that can be used to access

hardware functions without a detailed understanding of how the underlying hardware

works. A HAL is not the infamous artificial intelligence from 2001: A Space Odyssey.

HALs are essentially APIs designed to interact with hardware rather than to provide

high-level program blocks that ease application development. A properly designed HAL

provides developers with many benefits, such as code that is portable, reusable, lower

cost, abstracted, and potentially with fewer bugs. A poorly designed HAL can result in

increased costs and buggy software and can leave the developer wishing that they were

dealing with the previously mentioned infamous HAL.

30

�APIs Versus HALs
Traditionally, embedded-software developers have done a poor job developing software

that can be easily reused and ported. The reason is not necessarily the developers’ fault

but rather has its roots in the fact that the available hardware has been very resource

constrained, compiled code wasn’t the most efficient, and project pressures result

in software being developed in a hurry. For these reasons, most embedded-software

projects start out with a clean slate with little code being reused.

A major barrier to creating reusable software has been the very technologies that

developers are using, along with the microcontroller itself being a big culprit. Two major

factors for skipping APIs and HALs have been the fact that they can add a little overhead

because of function calls and that code space can creep up slightly. When flash memory

was expensive, a little code bloat could easily cause a significant increase in hardware

costs. Developers also considered using HALs to be a waste because the variability in

capabilities and low-level register and memory-map layouts make reuse appear very

difficult.

Embedded-software development needs in the twenty-first century are driving major

changes to the way software is developed. Hardware capabilities have dramatically

increased while costs have fallen significantly. The major project costs are no longer with

the hardware design and manufacturing but instead in the software development. These

factors are driving the need to reuse embedded software.

Embedded software can be easily developed that is reused from one application to

the next and even from an 8-bit microcontroller to a 32-bit microcontroller. Computer

scientists solved porting or reusing software many decades ago. Desktop programmers

have taken advantage of frameworks and components since the dawn of the personal

computer (if not earlier). One of the most important tools that embedded-system

developers have tended to neglect is the use of an API or a HAL.

An API is an application programming interface that defines a set of routines,

protocols, and tools for creating an application.1 An API defines the high-level interface

of the behavior and capabilities of the component and its inputs and outputs. An API

should be created so that it is generic and implementation independent. This allows

the API to be used in multiple applications with changes being made only to the API

implementation and not to the general interface or behavior.

1�http://www.webopedia.com/TERM/A/API.html

Chapter 2 API and HAL Fundamentals

http://www.webopedia.com/TERM/A/API.html

31

A HAL is a hardware abstraction layer that defines a set of routines, protocols, and

tools for interacting with the hardware. A HAL is focused on creating abstract, high-

level functions that can be used to make the hardware do something without requiring

detailed knowledge of how the hardware is doing it. A HAL can come in extremely handy

for developers who work with multiple microcontroller hardware types and need to port

applications from one platform to the next.

APIs and HALs are related. It could be argued that they do nearly the same thing.

The difference is that an API is designed to make application software easier while a HAL

is designed to make interacting with low-level hardware easier. An embedded system

that is well designed would have both a HAL to interact with the low-level hardware

and an API that interacts with the HAL to produce a set of APIs that simplify application

development.

�The API and HAL Landscape
As microprocessor capabilities have increased in recent years, the technical expertise

required and the time necessary to get a microcontroller up and running have also been

increasing dramatically. Setting up a simple UART can require days as one digs through

thousands of pages of technical documents to figure out exactly which registers and bits

need to be manipulated to establish basic serial communication with an embedded

system. Given the pressure on many development teams to deliver faster and at lower

costs, providing a HAL and an API can be a huge advantage.

Nearly every microcontroller manufacturer now has an API set that goes with their

microcontroller. Beyond just the microcontroller manufacturers’ APIs (and in many

cases the terms API and HAL are used synonymously), there exist several APIs that

embedded-systems developers can leverage that are attempting to be industry standards

but differ drastically in their capabilities and the engineer type that they are targeting. In

many cases, the APIs, HALs, components, and frameworks are referred to as a platform.

SOFTWARE TERMINOLOGY

Platform is a collection of APIs, HALs, modules, components, libraries, and frameworks

designed to work together to speed up embedded-software development and decrease project

costs.

Chapter 2 API and HAL Fundamentals

32

The first, and probably the most famously known, are the Arduino APIs.2 Every

Arduino board can use common software components and function calls from

the Arduino software library on any Arduino-based board. Arduino provides huge

flexibility in hardware use, and most developers using Arduino know little to nothing

about microcontrollers and sometimes even programming. These libraries provide an

excellent way for non-computer-programming folks to create functional applications.

The problem is that the API is targeted toward rapid prototyping and the maker

community and lacks a professional touch that would be easy to use in a professional

development environment.

Another well-known API example is ARM’s mbed platform. Mbed is like Arduino

in that it provides a common set of software features and functions that can be used to

develop software quickly with little knowledge of the underlying hardware. Professional

developers, though, will once again struggle with the fact that this platform is not

designed to be production intent and lacks important underlying error handling

and software analysis features that would be associated with a production-intent

product. Lacking these important tools and capabilities once again make mbed a great

prototyping platform but not a production-intent system. (There have been massive

efforts under way to fill in these gaps and make mbed a fully production-intent platform

that includes an RTOS).3

Beyond Arduino and mbed, there are professional production-intent standards that

developers can leverage to develop their embedded software and improve its reusability

and portability. A great example is AUTOSAR, which is used in the automotive industry.

AUTOSAR provides a great HAL for interacting with the low-level hardware. The problem

is that AUTOSAR is a bit convoluted and expensive to use as far as processing power goes

and doesn’t play well on resource-constrained microcontroller systems running under

200 MHz.

Unfortunately, a generic, industry-wide accepted standard does not exist for

microcontroller-based systems. ARM has attempted to create standards through their

CMSIS and mbed offerings, but in most cases these can only cover a standard way for

interacting with the microcontroller core and not with the entire microcontroller. Every

microcontroller manufacturer still has their own peripherals and other intellectual

property that are designed to be key differentiators and differ from competitor offerings.

2�https://www.arduino.cc/
3�https://www.mbed.com/en/

Chapter 2 API and HAL Fundamentals

https://www.arduino.cc/
https://www.mbed.com/en/

33

For this reason, in many cases these “industry standards” fail, and each vendor is now

producing their own unique and custom standard.

�The Good, Bad, and Ugly
The ability to leverage an API or HAL that a microcontroller vendor has created can

offer many advantages. The microcontroller manufacturer is the expert in how their part

works, so it only makes sense that they have the necessary knowledge to create software

that fully utilizes and is compatible with the microcontroller at a minimal cost. Nearly

every microcontroller manufacturer has their own API. A few choice examples to explore

include the Renesas Synergy™ Platform, Microchip Harmony, and ST Microelectronics

STM32CubeMX toolchain.

There are many benefits that developers can experience by using an off-the-shelf

HAL produced by a microcontroller vendor. First, if the vendor leveraged their internal

hardware understanding, then developers would expect the interfaces to be fast and

to utilize all the tricks that can be used within the microcontroller itself. Second, a

development team doesn’t need to spend months developing an API and HAL to

interface with the microcontroller. They can get the microcontroller doing what it should

be doing right out of the box. The ability to just use an existing API and HAL is a major

benefit to developers, which is why microcontroller vendors have started to supply them.

Teams can immediately start developing their application code rather than having to

spend months diving into highly technical datasheets trying to understand how the

microcontroller works.

Another benefit to developers is that in many instances the APIs and HALs have

been integrated into easy-to-use development tools that include configurators to help

ease the development burden. Engineers can select what components to include in an

application and specify how those components should be configured from a simple

Graphical User Interfaces (GUI). These tools vary drastically, however, in the software

quality that is generated from the toolchain.

�Potential Issues and the Boogeyman
All APIs and HALs are not created equal. Whether a development team is using an open

source standard or a microcontroller vendor–provided standard, or have decided to roll

their own standard, there are a few concerns that developers need to be aware of that can

Chapter 2 API and HAL Fundamentals

34

result in major software issues. The issues, if not considered up front, can come back to

haunt a team, causing many sleepless nights as a result of an ill-considered boogeyman.

These issues can include but are not limited to the following:

•	 Tied to a single toolchain

•	 Copyright infringement

•	 Execution efficiency

•	 Functionality limitations resulting from abstraction

•	 Integration issues

•	 Code bloat

•	 Readability

Microcontroller vendors have started to tie their APIs and HALs into automated

toolchains that allow a developer to select which components they need in a project and

easily configure them. For a developer using these toolchains, life is simplified and huge

time and cost savings can be realized throughout the project. For some, though, it won’t

be all blue skies. A potential issue arises when a team wants to change microcontroller

vendors. Suddenly, all their application code is tied to the vendor’s APIs and

functionality, which are tightly integrated together. Attempting to port that application

code to a new API and HAL can be time consuming and costly.

This brings us to the second issue. A development team may decide that while they

are tightly tied to the toolchain, they can easily just modify the low-level register accesses

to use a different microcontroller and maintain the same API. The problem is that if you

read the fine print for any vendor-supplied software, it is quite clear that the software,

APIs, HALs, and so on are only to be used with their microcontrollers! Using them with a

competitor’s processor is a copyright violation. The result is having to rework or rewrite

a fair amount of software or violate the copyright and nervously wait for potential legal

ramifications (which of course is never the right solution).

Beyond the potential business and legal ramifications of using the software that is

provided by microcontroller vendors, there is also the question of efficiency. Code that

is written for a very specifically defined application can be very efficient. Abstracting the

hardware and attempting to provide hooks for every possible use and application will

add layers to the software. The more layers there are, the more function calls that execute

before work is performed. This means that the system latency will begin to creep up. On

Chapter 2 API and HAL Fundamentals

35

a modern-day 32-bit microcontroller, this is not a problem; however, on an old 8-bit or

16-bit microcontroller, this could potentially be a big deal. Developers therefore need to

look at how the provided software is architected and take some measurements to ensure

that the execution efficiency is acceptable.

Abstracting a peripheral is a great technique to allow application developers to

focus on the application and not worry about the underlying hardware. The problem is

that through abstraction, sometimes little details and functionality get lost that could

improve execution efficiency or simplify a task. Vendors will often write their automation

tools to cover every device even though there are slight variations. Sometimes the details

are abstracted out with no method to access that functionality through the API and

HAL. In a later chapter, we will discuss how developers can deal with this issue.

There are also the inevitable integration issues. Most development teams use

a mixture of commercial and open source software. In many cases, these software

components were not designed to work with each other or ever tested together. The

result is time wasted debugging and integrating software that from the surface appeared

to be compatible but proved otherwise. Sometimes developers must add additional

wrappers or create horrible constructs to make a square peg fit into a round hole.

The inevitable result of creating additional layers and abstractions within software

is that the code gets slightly larger and larger until it is, well, bloated. Flash has become

relatively inexpensive, and many developers don’t worry as much today about code size

as they did fifteen or twenty years ago. Still, it is something that needs to be considered

by developers.

Finally, we have the potential for readability issues. When pulling in software

vendor–supplied APIs, HALs, components, and so forth, the likelihood that they all

used the same coding standard is rather slim. Functions and variables will use different

naming conventions, which can be confusing and detract from the software function.

Teams need to decide how best to deal with this, whether it’s minor modifications, just

dealing with it, or coming up with a unique and innovative solution. One potential

solution is to compile the third-party components into libraries and include them in

binary form so that the source code is not available in the project. However, this can

potentially cause issues for developers during debugging.

Additional potential issues exist, but these are the ones that developers will find

have the greatest impact on their development efforts. Each issue needs to be carefully

considered and weighed before diving into a development effort and selecting or

building the API.

Chapter 2 API and HAL Fundamentals

36

�Characteristics Every HAL Should Exhibit
Just because a platform or framework provides a HAL does not mean that it is going to be

easy to use or will improve the software. I’ve encountered many instances where the HAL

designers went overboard in their design and abstracted the HAL so much that it would

take weeks to make heads or tails of how the HAL was working. Those designers seemed

to believe in obfuscation, not abstraction. So, how can developers distinguish between

the good HALs and the bad ones? There are probably more than two dozen different

characteristics we could examine, but there are ten key characteristics that bear the most

weight. Before going into detail on each characteristic, the following is a summary to

provide the reader with the roadmap for where the discussion is going:

•	 Contains a well-defined coding standard

•	 Reasonable documentation and comments

•	 Written in C99

•	 Can be complied with any modern compiler

•	 Abstracts useful hardware features

•	 Easily extensible

SOFTWARE TERMINOLOGY

Coding standards contain a set of programming rules, naming conventions, and layout

specifications that provide a consistent software.4

•	  Modular and adaptable

•	 Deterministic and well-understood behavior

•	 Error handling and diagnostic capabilities

•	 Integrated regression testing

With this preview in mind, let’s now examine the characteristics in greater detail.

4�http://www.decision-making-confidence.com/kepner-tregoe-decision-making.html

Chapter 2 API and HAL Fundamentals

http://www.decision-making-confidence.com/kepner-tregoe-decision-making.html

37

�Characteristic #1: Contains a Well-Defined Coding
Standard
In my experience, I have found that most HALs do not have a well-defined coding

standard associated with them. Now, don’t get me wrong—some microcontroller

vendor–supplied HALs followed a coding standard, but after reviewing and searching

their documentation, I discovered that it wasn’t published or explicitly stated anywhere

for the developers. Perhaps this is just a minor gripe, but the HAL is taking very specific

microcontroller hardware and features and creating tidy and easy-to-use black boxes.

A few pages stating the coding standard and mechanisms used to create the HAL

doesn’t seem like too much to ask, especially given the fact that developers could then

incorporate that standard into their own documentation and practices to help provide a

clean and consistent look to the entire code base.

�Characteristic #2: Reasonable Documentation
and Comments
I love open source software, but I also hate it. Open source software is usually sparsely

populated with comments, which forces a developer to infer or guess at what the code

is doing. Just because I can see the code doesn’t mean that I will know what on Earth it

is doing or, most important, why the developer is doing it that way. Running into even

the smallest hiccup or problem results in a herculean effort to understand and resolve

the issue. The documentation doesn’t have to be a book, but a few clear and concise

comments sprinkled throughout the source code that explain to an engineer how to

configure and use the HAL is critical. A few examples certainly wouldn’t hurt by any

means either, or references to documents that can shed light on the code.

Chapter 2 API and HAL Fundamentals

38

WHEN ARE THERE ENOUGH COMMENTS?

Ask just about any developer this question and you will get a spectrum of answers ranging

from “Commenting is a time waste” through “There are never enough comments.” The answer

is that there should be enough comments for a developer who is new to maintaining the

software to clearly understand what the code is doing and why. Sometimes a developer can

get away with no comments if the code is self-explanatory, while at other times a developer

may need to write a giant comment block.

Chapter 5 will dig into documenting firmware in greater detail.

�Characteristic #3: Written in C99
There are so many choices for languages and language versions available to developers

that one’s head can begin spinning quite quickly trying to decide which to select.

Typically, as low-level hardware programmers, the language of choice is going to be

either C or C++, but given tradition the C programming language is the best bet. That

leaves a simple choice between using C90, C99, or C11. C90 is a bit antiquated and

is missing some very useful constructs that are included in C99. C11 is too new and

very few compilers targeting microcontrollers support the updated and new features,

although more support is being added with each passing year. The safest bet for any

development team is to make sure any HAL that is being used conforms to the C99

standard. C99 provides the most flexibility and by now is supported by every compiler. If

the compiler you are using does not support C99, then it is time to change compilers.

�Characteristic #4: Can Be Compiled in Any
Modern Compiler
The HAL should be designed to be capable of being compiled on any compiler. Whether

a development team selects GCC, IAR, Keil, or some other compiler (there are probably

only 100 different ones on the market), the HAL that is used should be able to be easily

moved from one compiler to the next without any changes. Standard ANSI-C should be

used, with compiler-specific additions such as attributes and #pragmas being kept to

a minimum. Where there are compiler-specific features needed, the HAL should make

that very clear using pre-processor directives for the desired compiler and flagging an

Chapter 2 API and HAL Fundamentals

39

error if the compiler has not yet been specified. Chapter 1 showed an example of how

this could be done.

It is easy to start developing with one compiler only to discover compiler

deficiencies, develop a new partnership with a vendor, get a great deal on a new license,

or have team member preferences change. Keeping to ANSI-C and even occasionally

checking compilation against multiple compilers can help ensure that the HAL will be

easily portable to multiple compilers. Numerous teams that I’ve worked with have used

more than one compiler for different product lines or even had their own compiler that

they would periodically compare to GCC. (Maintaining your own custom compiler is

also not recommended even if the company you work for is a silicon behemoth).

�Characteristic #5: Abstract Useful Hardware Features
Microcontroller peripherals have become extremely complex and are designed to cover

every possible design need conceivable. A development team could easily create a HAL

with dozens of interfaces to handle all those possible nuances and features. A developer

who does that would be wasting their time. In most applications, only a few common

features are used from any single peripheral. The neat custom features like GPIO clock

validation aren’t commonly used, so there is no need to put them in the HAL unless you

are a silicon vendor designing the APIs and HALs for your end users. Special features can

be added to the HAL by extension, which will be discussed in a later chapter. Minimizing

the features in the HAL can make the HAL more manageable and easier to use.

RECOGNIZING BAD APIS

APIs are the basic building blocks that applications are built upon. A good API should be small,

efficient, and easily extensible. Throughout my career, I have had the opportunity to use both

good and bad APIs. Developers can try to quantify what a good API is and what a bad API is,

but the fact of the matter is that developers will know it when they see it. A bad API will often

have the following characteristics:

•	 Has more than 12 interfaces

•	 Can be refactored to decrease the interface complexity

Chapter 2 API and HAL Fundamentals

40

•	 Doesn’t follow an obvious coding standard

•	 Is not easily memorable and requires constant looks at the reference manual

•	 Requires intense study, integration, and testing to get it to work properly

A good API will seem natural to developers.

�Characteristic #6: Easily Extensible
Keeping the HAL common and to general peripheral features to make it more

manageable is a great idea. The problem, however, is what if I selected a microcontroller

specifically for that specialized peripheral feature and now don’t have access to it

through my HAL. A HAL should contain a pre-defined and standard function set, and

then from those interfaces the HAL should be extensible to include the custom features

that are included in many microcontrollers. For example, the HAL can expose an

interface for directly accessing peripheral registers in a specific memory region that a

higher level Board Support Package (BSP) or application module can use to configure

the special behavior. The HAL then stays simple and common from one application and

microcontroller to the next while at the same time allowing additional custom features.

�Characteristic #7: Modular and Adaptable
A HAL should not be a single massive file that contains every possible feature for the

microcontroller. The HAL needs to be modular, with the different microcontroller

peripherals each existing in its own module. Separating the peripherals makes the code

more modular and reusable and allows developers to adapt to different application

needs. If a project doesn’t need the SPI peripheral, they can simply exclude that module

from the code base and save precious flash space. Using a modular HAL also makes it

much easier to parallel the work that needs to be done so that multiple engineers can all

be working at the same time.

Chapter 2 API and HAL Fundamentals

41

CASE STUDY—ONE MODULE TO RULE THEM ALL!

The Lord of the Rings is a great movie. I’m a huge fan, but having a single code module to rule

the entire application does not sound like fun. It’s 2017 when I’m writing this, and I still encounter

customers who write their embedded software in a single source module named main. In most

instances, these single-module applications contain at least 100,000 lines of code!

During one particular encounter, we had multiple engineers working on a new product that

was an improvement over an earlier prototype. The goal was to reuse as much code as

possible from the original product in order to save time and costs and bring it up to the latest

and greatest in organization and software architecture. The product had separate hardware

components, so we assigned one engineer to port the code for each device.

Trying to pull code from the 100 KLOC-plus code base was a nightmare since everything

was tightly coupled and hardware dependent. In frustration, I finally said the heck with it and

started from scratch. When I was finally done with my code, the other two engineers were still

frantically trying to make sense of the code they had before them. Countless time was spent

on their part searching and sifting through the code looking for things. Poor code organization

and a single module made their lives a nightmare and cost the company countless weeks if

not months in additional engineering costs.

The only time that One Module should be used to rule them ALL is if that one module is a

configuration module that is used to enable and disable features and configure the project.

�Characteristic #8: Deterministic and Well-Understood
Behavior
As teams develop and use a HAL implementation, data should be collected and

analyzed that provide information related to the HAL performance. A good HAL will

be deterministic and have well-defined and -understood behavior. A developer should

know that calling Gpio_PinWrite will require a minimum of 15 microseconds and a

maximum of 25 microseconds to execute but that it will always be within that range

on specific target processors running at a specified frequency. In most cases, HALs

are provided for microcontrollers but contain no intimate details as to how the HAL

behaves in a real-time environment. Sure, one could argue that different microcontroller

architectures and clock rates will change these characteristics, but even the data

Chapter 2 API and HAL Fundamentals

42

provided for one or two architectures with the test details can help an engineer infer the

behavior they can expect. Once implemented in their own design, an engineer can then

verify that assumption themselves, record the new values, and push those back to the

HAL producer to provide yet more data for engineers to make ever better decisions.

�Characteristic #9: Error-Handling and Diagnostic
Capabilities
I would guess that 99 percent of the HALs I have seen give little to no thought to

error handling or diagnostic capabilities. I suspect the reason is that using HALs in

microcontroller-based applications is so new that the whole focus is on just getting the

first cut done. I suppose the alternative could be that the HAL developers just assumed

that there would never be an error or problem and that the system would just run

flawlessly. I’ve met quite a few teams in my career that had that mentality.

Error handling doesn’t have to be perfect. Returning a value indicating if the

intended interfaced call was successful or not could be enough. Alternatively, perhaps

requiring a full check on the peripheral to ensure that it is configured properly is

necessary. Developers should look for at least some minimal amount of error handling

in the HAL. Otherwise, something will go wrong and it will be up to the developer to dig

in and try to discover what.

CASE STUDY—ASSUMING EVERYTHING WILL BE OKAY

Software engineers are very optimistic creatures. If the software runs correctly one time, it

is often assumed that it will always run correctly no matter what the circumstances may be.

Unfortunately, this is not the case!

On numerous occasions, I have encountered application code that just did not seem to work

the way that was expected. After being called in to help identify the issue, I discovered that the

developers not only didn’t include any error handling or checks in their software, they also did

not check return values for functions.

After sprinkling error checking throughout the code, I discovered that one function was

returning a value that stated there was insufficient memory available. After making a slight

adjustment, the code ran fine.

Chapter 2 API and HAL Fundamentals

43

Debugging software can be time consuming and expensive, both financially and emotionally.

Don’t assume that everything will be okay; in fact, assume that nothing is going to go right!

Make sure that all return values are checked for errors. Adding in extra checks may use some

extra time and extra code space and cause a negligible performance hit, but these minor costs

will save far more time, budget, and emotional wear and tear than they cause harm.

�Characteristic #10: Integrated Regression Testing
The major benefit of using a HAL is to abstract out the lower-level hardware and to

create a clean interface that is easily ported. If code is going to be reused, there should

also be regression tests associated with that code. At a minimum, developers should

create a test-case list that can be walked through to verify the HAL behavior. Manual

checking can be error prone and extremely labor intensive. In many cases, a team will

pick only a few boundary conditions and just assume the rest are correct. Automated

regression tests, on the other hand, can walk through all the possible combinations and

completely verify all the test cases. As the HAL matures and grows, new test cases can

be added or removed to fit the team needs. Just remember: If the software hasn’t been

tested then it doesn’t work! Figure 2-1 provides an example of what an integration server

might look like.

Compiler

Source Code

Configuration

Libraries

Test Harness

Unit Tests

Functional

Regression

Integration

Test Reports

Figure 2-1.  Integration server performing automated testing

Chapter 2 API and HAL Fundamentals

44

An integration server will pull the latest source code, configuration, and libraries and

verify that there are no problems compiling the code. Some setups will even perform

static code analysis and generate reports based on the compilation and code analysis.

Additional analytics can be performed, such as measuring the software function

complexity.

Once the compiler has successfully compiled the code, the executable can be passed

to the test harness. The test harness can use either mock hardware—that is, hardware

that is simulated in memory—or it can use real hardware and integrate into GDB or

other debugging tools. The test harness should have tests that are traceable to the

system requirements. Example tests that would be performed are unit tests on functions,

functional tests to verify that hardware performs as expected, regression tests that cover

all previous test cases and ensure that they still pass, and then perhaps even integration

testing.

�Evaluating HAL Characteristics
There are many ways that a developer can evaluate whether a HAL is going to meet

the system requirements, but one method that I have found provides a very unbiased

opinion is the KT Matrix. The KT Matrix4 allows a developer to identify all the

characteristics that they are interested in evaluating concerning a decision that they

need to make. Each characteristic can be provided a weight to show how important

it is to the decision-making process. The KT Matrix can be used to decide which HAL

to use. The potential HALs can then all be evaluated based on how well they meet the

characteristics. Each HAL is given a weighted value, and the HAL that best meets the

characteristics is the HAL that is selected. Figure 2-2 shows an example KT Matrix that a

developer might use to select a HAL.

Chapter 2 API and HAL Fundamentals

45

There are a few different ways that the KT matrix can be evaluated. In general, each

characteristic in a group is given a rating from 1, being the worst rank in the category,

to X, being the highest rank in that category. Every engineer involved in the decision

provides a ranking for the HAL, and then the ranking is weighted and added to the other

rankings. The rankings for all the criteria are then summed and the HAL with the highest

score is the HAL that best meets the HAL criteria.

�To Build or Not to Build
Chances are, there is no HAL on the planet for microcontrollers that currently meets all

the characteristics that we just discussed or that meets every development team’s needs.

Certainly, some good HALs exist, but no single microcontroller HAL brings the best of

all worlds. Some may be complete overkill for the application space or company needs

while others may not go far enough. In these circumstances, a development team may

need to build their own HAL. For those of you up to that challenge, we will be discussing

how to do this in detail in this book, but for now let’s talk about how to decide whether to

build one ourselves, the potential cost, and how to make the process manageable.

Figure 2-2.  KT Matrix to select a HAL

Chapter 2 API and HAL Fundamentals

46

There are several factors that a development team needs to consider before deciding

to build their own HAL. These factors include:

•	 Availability of existing HALs

•	 Target microcontroller(s) and application

•	 Cost

•	 Development time

Before deciding to start designing your own HAL, it’s critical to determine whether

you need to design one yourself or if one exists that already meets your needs and

requirements. A good starting place is to do some basic research and identify any HALs

and standards that currently exist and get familiar with them. What are their strengths?

What are their weaknesses? Having this information empowers a team to properly

evaluate whether existing HALs will fit their company’s needs.

The target microcontrollers and application can influence whether a development

team will create their own HAL or use an existing HAL. For example, if a development

team has decided that they will always use a microcontroller from a single

microcontroller supplier, the team may be able to just use the HAL provided by the

microcontroller vendor. This would save the time and cost of developing a HAL from

scratch. However, it also ties the development team into that vendor’s ecosystem

and may make it extremely costly to change microcontrollers later on down the road.

Consider the fact that in most cases those HALs have licenses or copyrights associated

with them and using them with any other manufacturer would violate those licenses.

Developing a HAL from scratch can take some additional development time to be

properly designed as well as some additional up-front costs. The costs are usually offset

and easily recouped after one or two development cycles depending on the experience

of the designing engineers. However, it is not uncommon for a HAL to require multiple

iterations and multiple projects before it is finally fleshed out and covers all the possible

permutations. The hope, however, is that developers can use the knowledge and

experiences in this book to quickly and cost effectively implement their own HALs that

will not tie them to any microcontroller toolchain.

Chapter 2 API and HAL Fundamentals

47

�A First Look at a HAL
To many readers, what a HAL looks like is completely obvious. A HAL is round, with a red

optical center surrounded by a lens and gray trim. This is, of course, the description for

how the HAL 9000 looked in 2001: A Space Odyssey. The HAL that we are interested in as

developers is a software interface that allows us to easily control a microcontroller. To a

developer, these HALs are nothing more than a header and source module with a pre-

defined function set. We will be going into a great deal of detail on this later, but to give a

sneak peak, Figure 2-3 shows an example HAL for a GPIO peripheral.

Figure 2-3.  Example GPIO HAL

Figure 2-3 has a clear majority of the characteristics we previously discussed that all

HALs should have. The characteristics that are lacking can be easily added by the reader.

Throughout this book, we will go into the details of the HAL listed and discuss the design

decisions and steps to put it together, not just for GPIO but for any microcontroller

peripheral. Consider Figure 2-3 your sneak peek!

Chapter 2 API and HAL Fundamentals

48

�The API Scope
The API is a tool available to developers that can be used to dramatically speed up

software development. Developers who want to write code that is reusable will break

their software up into logical components that exhibit certain functions and features

that are useful building blocks for the application. A developer doesn’t necessarily

want to understand every detail included in the component but simply what inputs are

necessary to get the desired outputs. An API is provided for the component to abstract

the underlying details and allow application developers to very rapidly develop software.

It is important to note that a HAL is really a specialized case for an API. Both APIs

and HALs are used to abstract out the underlying component details and speed up

software development. They both are used with components. The real difference

between them is that a HAL is used to abstract hardware functionality while an API is

used to abstract software components.

For most software developers, the HAL doesn’t even exist in their minds because

they are always writing code at the highest software levels available. Take, for example,

web developers or mobile phone application developers. Sure, there is hardware that

drives the entire system, but it is abstracted through so many software layers that, to the

developer, there is only software.

APIs act as a standard—or, to some degree, as a contract—between the component

that is being used and the necessary inputs and outputs necessary to make the

component function. They provide the definition for how to use software libraries, real-

time operating systems (RTOSes), and many other possible software components one

might find in a system.

Embedded-software developers might wonder if there are any API standards that

can be used to reuse code and speed up development. At first thought, the answer is that

there aren’t any. The truth is, though, that there are API standards that we use that we

aren’t even aware exist! Take, for example, any RTOS that is on the market today. Each

RTOS has its own API standard that it adheres to that allows developers to consistently

use and reuse the RTOS. Now, of course, each RTOS has a different API standard, and

sure it would be great if they all had a single standard that they followed (something like

POSIX), but unfortunately, that is not the case (for now).

Chapter 2 API and HAL Fundamentals

49

There are many examples available to embedded-software developers of APIs. The

following is a small list, but it should give you an idea about the APIs that are available:

•	 EEPROM JEDEC Standard (all EEPROMs have a standard hardware

interface that can be used to create a standard API interface)

•	 FatFS (open source Fat File System library)

•	 AUTOSAR

•	 GUIX (graphical user interface APIs from Express Logix)

•	 Arduino (high-level components do have a standard interface)

�API Characteristics to Look For
Many API characteristics that developers should look for will include the list that was

previously discussed for the HAL. However, that list can be expanded to include generic

characteristics that are considered good programming practices. For example, a few

additional characteristics that we should consider include the following:

•	 Uses const on read-only parameters liberally

•	 Uses easily understood naming conventions

•	 Has consistent look and feel that is intuitive

•	 Well documented with examples

•	 Flexible and configurable

Let’s take a quick look at why these five characteristics are so important.

�Characteristic #1: Using const Frequently
The const keyword tells the compiler that the data being referred to by the const

variable is read-only. The actual memory location may be writable, but through the

variable the data should be treated as read-only. There are many times when a developer

may have data that can change, but when passing it into an API call, doesn’t want the

data manipulated or modified. To protect that data, one can type the variable as const

and pass it into the API. If the API doesn’t need to modify the variable, it should treat

it as read-only so that a maintaining engineer or just a simple coding mistake can’t

accidentally corrupt or change the data.

Chapter 2 API and HAL Fundamentals

50

A good API will declare many parameters as const because it is just using the data to

perform useful work and wants to protect the data that it is using. APIs that are light on

using const aren’t necessarily bad, but they do open themselves up to the opportunity

for something to go wrong and behave unexpectedly.

�Characteristic #2: Easily Understood Naming Conventions
A good API is easy to read and understand. As a developer becomes familiar with the

API, they should be able to naturally remember the different API calls based on the

function that is needed. This seems obvious, but in many circumstances the APIs that

we use are quite bad and require us to constantly go back to the documentation to

remember the exact name.

A great example is if a developer were to right now go and compare the API calls

associated with FreeRTOS with those provided by Micrium’s uOS II or III. FreeRTOS uses

weird and non-intuitive APIs. Some calls have v’s or x’s in front, which can easily confuse

developers. For one, they must figure out what the heck those v’s and x’s stand for.

Once they do, they must try to remember what they mean! Was v for a macro or a direct

function call? Was it the other way around? On the other hand, the uOS calls are obvious

and straightforward and much easier to remember. Figure 2-4 shows a few examples

from FreeRTOS and Figure 2-5 shows the corresponding calls in uOS III.

Chapter 2 API and HAL Fundamentals

51

Figure 2-4.  Example FreeRTOS APIs5

5�http://www.freertos.org/a00106.html

Chapter 2 API and HAL Fundamentals

http://www.freertos.org/a00106.html

52

Figure 2-5.  Example uOS III APIs6

6�https://doc.micrium.com/pages/viewpage.action?pageId=10753180

Chapter 2 API and HAL Fundamentals

https://doc.micrium.com/pages/viewpage.action?pageId=10753180

53

�Characteristics #3: Consistent Look and Feel
The APIs for any component should have a consistent look and feel. They should follow

a similar standard and be intuitive to the developer. APIs that are not consistent are error

prone, and developers often find themselves digging through the documentation trying

to figure out what is going on. The naming conventions should also follow a standard that

gives the overall API a clean and professional look. Examining Figure 2-4 and Figure 2-5

again will demonstrate what a developer would expect from a professional API.

�Characteristic #4: Well Documented
Good APIs will have great documentation associated with them, detailed documentation

that shows the inputs, outputs, and expected results. Some APIs will even provide initial

and post conditions, which is awesome! There should be examples that show how to use

the APIs and maybe even a few that show a developer what not to do and identify the

primary pain points developers will encounter when using the component.

�Characteristic #5: Flexible and Configurable
APIs are at a high enough level that sometimes one size does not fit all. A good API should

be flexible enough to work on multiple hardware platforms and provide a HAL to deal

with differences in the hardware. The ability to configure the component to account for

differences in hardware or even application is very critical. There are a lot of popular APIs

available that just are not well developed, and the users end up struggling through them.

That time and effort could have been spent innovating and coming up with improvements

rather than just getting the component to function the way it is supposed to.

�Designing Your Own APIs
In many instances, developers will be integrating components into their applications

that already have a defined API that they have very little control over. However, there will

be times when developers are creating their own components that they will be using for

years as their own products evolve. In these instances, developers will want to create

their own APIs that adhere to the characteristics that we just discussed.

Chapter 2 API and HAL Fundamentals

54

�A First Look at an API
APIs really don’t look any different then HALs do. They are simply function calls within an

application that have a public scope and can be accessed by any module. The only difference

is that the APIs are designed to make application development easier versus working

with hardware easier. A great API example to consider is for an RTOS. Figures 2-6 through

2-8 show the example API calls to create a task in Micrium’s uC/OS-III, FreeRTOS, and

Expresslogics’s ThreadX real-time operating systems. Take a moment to look through them.

Figure 2-6.  FreeRTOS TaskCreate7

7�http://www.freertos.org/a00125.html
8�https://doc.micrium.com/display/osiiidoc/OSTaskCreate

Figure 2-7.  Micrium uc/OS-III OSTaskCreate8

Chapter 2 API and HAL Fundamentals

http://www.freertos.org/a00125.html
https://doc.micrium.com/display/osiiidoc/OSTaskCreate

55

Now, I am not knocking any RTOS, but from a quick look it is obvious that there

is no standard that is being followed either in naming convention or for features and

functionality. Each RTOS will fill a need and a niche, and some will meet the API

characteristics more than others. I’m not advocating one RTOS over another, but rather

simply sharing the API for three very popular and successful RTOSes. Starting with one

RTOS and then trying to switch to another obviously will require rework since the APIs

are not standardized.

�Wrapping APIs
As I mentioned earlier, there may be certain components in an embedded system that

meet a common design challenge, such as real-time scheduling, but the components

available on the market do not have a standard interface. When this occurs, developers

can take the matter into their own hands and add an API wrapper to the components to

make them fit a standard interface.

Figure 2-8.  Express Logic ThreadX tx_thread_create9

9�http://rtos.com/images/uploads/programmersguide_threadx.pdf

Chapter 2 API and HAL Fundamentals

http://rtos.com/images/uploads/programmersguide_threadx.pdf

56

For example, I might have three different RTOSes I want to use in a design, and the

product or process will determine which one I use. As a developer, I can look at the

commonalities between the operating systems and create my own API functions that

will call the desired function in the target RTOS. I could create an API for creating a task,

using mutexes, semaphores, or even message queues. The API would then be a generic

and standard call, which is replaced by my call into the specific RTOS function. Figure 2-9

shows an example of what the wrapper would look like. The application code would use

this function, and then within that function call would be the RTOS-specific task-create

function call.

Figure 2-9.  Using an API wrapper

Using a general wrapper in this way has many advantages, and there are quite a few

places where a developer may want to use a wrapper API, such as:

•	 RTOS calls

•	 Memory accesses

•	 File systems

•	 High-level components that require third-party software

•	 Circular buffers

•	 External devices

Using a wrapper is not all blue skies though. Every function call does incur a little bit

of overhead on the processor, and passing parameters into the function does use some

stack space. In most applications, the overhead performance hit and extra code will be

negligible. Developers should still be careful and aware that the wrapper does affect

performance and code size.

Chapter 2 API and HAL Fundamentals

57

�Why Design Your Own APIs and HALs?
Silicon vendors provide their own HALs to help speed development, or even tools like

Processor Expert and STM32CubeMx that can automatically generate the HALs needed

based on the project configuration. Microchip has MPLAB Harmony, Renesas, the

Renesas Synergy™ Platform, so why not just use those? After all, a lot of time and effort

has gone into developing these capabilities for developers, and they are offered free of

charge. There are a few times when a development team may decide to overlook the

silicon vendors’ APIs and HALs and instead use their own. These include when the

development team is concerned with the following:

•	 Not wanting to be stuck using the vendor’s toolchain, which can be

costly and time consuming to change

•	 API is under copyright so it cannot be ported without being

completely rewritten

•	 API quality

•	 Coding standards

•	 Robustness

•	 Code size

•	 Quality

•	 Testability

Microcontroller manufacturers are making it easier and easier for developers

to abstract the low-level hardware and focus their efforts on their application.

For example, the Renesas Synergy Platform has tried to meet all these concerns by

developing a strict software development life-cycle process and focusing heavily on

quality. For some developers, this is great news since they no longer need to worry

about that low-level driver design. For other developers, this is the end of embedded

software as we know it, or they may have other concerns that will cause them to shy away

from using these vendor-specific solutions. The truth is, microcontrollers have become

extremely complex, and in order to deliver products within realistic time frames and

budgets, developers need help to abstract out these complexities and work at a higher

abstraction level.

Chapter 2 API and HAL Fundamentals

58

�Comparing APIs and HALs
Before we conclude this chapter, it is a useful exercise to examine the similarities and

differences between APIs and HALs. As we have seen, APIs and HALs have a lot in

common. In fact, in many circumstances developers may use the term API to include

both the low-level software and the high-level application software. Remember, HALs

interact with hardware at the lowest levels while an API interacts with other software

at a high level. Beyond these differences, developers are looking for the exact same

characteristics in both APIs and HALs. Take a few moments to examine Figure 2-10,

which demonstrates the commonalities and differences between APIs and HALs.

Developers will easily notice that APIs and HALs have far more in common than they do

differences.

Interacts with SoftwareInteracts with Hardware

HALs APIs

Low-Level Software High-Level Software

Abstractions

Hide Implementation Details

Encapsulate Data

Libraries, Frameworks and Components

Configurable

Improve Reusability

Increase Portability

Simplify Design and Implementation

Extendable

Must be Real -time

Figure 2-10.  APIs versus HALs

�Going Further
Understanding HALs and APIs requires more than just reading about them in this book.

Practical experience and knowledge is crucial, especially for developers interested in

developing their own portable HALs and APIs. The following are a few thoughts on what

Chapter 2 API and HAL Fundamentals

59

the reader can do to strengthen their understanding and start applying the concepts

we’ve just discussed immediately in their own development efforts:

•	 Identify at least three different HALs that exist currently in the

embedded-software industry. Schedule time to review these

standards. While reviewing them, develop a simple chart that

answers the following questions:

•	 What strengths does this HAL exhibit?

•	 What weaknesses does this HAL exhibit?

•	 How well does it meet the characteristics every good HAL

should have?

•	 Identify at least three different APIs that exist currently in the

embedded-software industry. Schedule time to review these

standards. While reviewing them, develop a simple chart that

answers the following questions:

•	 What strengths does this API exhibit?

•	 What weaknesses does this API exhibit?

•	 How well does it meet the characteristics every good API

should have?

•	 Earlier in the chapter, three different microcontroller platforms were

mentioned that utilize a HAL and API framework. Investigate each

framework listed here and examine the similarities and differences:

•	 Renesas Synergy Platform

•	 Microchip Harmony

•	 ST Microelectronics STM32CubeMx

•	 From the preceding platforms, how easy would it be to switch from

one silicon vendor to the next? Are their APIs similar or completely

different? List several advantages and disadvantages to using these

platforms.

Chapter 2 API and HAL Fundamentals

60

•	 Review the characteristics of HALs and APIs. Make a simple

spreadsheet with each characteristic listed. Now, go online to a few

RTOS vendors. Review their API interfaces for task management,

semaphores, mutexes, and message queues. How well do these APIs

meet the characteristics of good APIs?

•	 Create a KT Matrix that can be used to evaluate APIs and HALs from

third-party sources. Pick a few external APIs, such as ones for an

RTOS or HAL, and with a close group of engineers walk through the

process for selecting the API.

•	 Review Figures 2-4 to Figure 2-8. Do real-time operating systems

have a standard API interface that developers can follow? What does

this mean for developers when it comes to porting to a new OS,

development time, learning curve, and costs?

•	 Design a wrapper that could be used to interact with any RTOS

function calls.

Chapter 2 API and HAL Fundamentals

61
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_3

CHAPTER 3

Device Driver
Fundamentals in C

“Software is like entropy. It is difficult to grasp, weighs nothing, and obeys
the second law of thermodynamics; i.e., it always increases.”

—Norman Ralph Augustine

�Understanding the Memory Map
The memory in every microcontroller is broken up into different regions that relate to

specific microcontroller functions. Despite similar behaviors and capabilities among

microcontrollers, memory regions and organization vary from one microcontroller to

the next, and sometimes even within the same microcontroller family. Even though each

microcontroller is organized differently, a developer can still develop drivers that are

reusable and easily portable from one microcontroller to the next.

To create a driver, a developer must understand the different memory regions,

their purpose, and the techniques available in the C programming language to map to

those memory regions. Memory is organized into different regions, such as CPU, ROM,

RAM, FLASH, Peripheral, and EEPROM. These regions are connected to the CPU

through various buses, but the specifics will vary from one architecture to the next.

Figure 3-1 shows an example of what a developer would expect to find located within

the memory map.

62

ROM memory regions are programmed by the microcontroller manufacturer and

can contain anything the manufacturer thought would be useful to their clients. For

example, it is not uncommon to find bootloader, motor control, or flash algorithms

permanently stored in these ROM regions. A ROM memory region cannot be modified

by a developer, and the algorithms located there are permanent. A ROM region does not

count toward the total code space that is available to a developer. Developers can access

the algorithms stored in the ROM by mapping a function pointer to the code located

there and de-referencing it.

RAM memory regions are volatile memory locations that can be programmed during

the program’s execution but will lose their data upon reset, power cycle, or power down.

RAM contains the program stack, heap, and statically allocated variables. A developer

must tell the compiler which memory areas will contain the program stack (for a bare-

metal application) and the heap (which contains dynamically allocated variables such

as the stack in an Real-time operating system (RTOS) and other on-the-fly application

needs). Once these memory regions have been specified, the remaining memory can be

used for general-purpose application variables and data storage.

Flash memory regions contain the executable application instructions, data tables

(such as calibration data), and initialized variable values. In general, the flash memory

regions are programmed when a device is a manufactured. However, the flash contents

can be modified in the field through a bootloader application. The flash contents

are carefully monitored during program development to ensure that the region is

appropriately sized to hold the entire application. A good rule of thumb is to also size the

flash region to allow new features to be added over the product’s lifetime.

ROM

FLASH

EEPROM RAM

CPU Timer

GPIO

UART

Figure 3-1.  Microcontroller memory regions

Chapter 3 Device Driver Fundamentals in C

63

The CPU region contains control registers for the CPU itself, sometimes related to

interrupts, faults, exceptions, and clock control. CPU registers are typically initialized by

the start-up code, with vendors providing their own interfaces into the memory region.

CPU regions are typically abstracted to hide the inner workings of the microcontroller

from the developer.

CASE STUDY—ASSUMING RAM VALUES ARE PRESERVED

On numerous occasions, I have seen clients who get the ingenious idea to save memory and

application time by using RAM to store data between power cycles. The assumption is that by

writing data to RAM, performing a reset, and then powering up, the memory location can then

be read with the previous application’s values and state. I have seen developers most tempted

to do this when creating a bootloader. The data stored is meant to tell the application whether

the application or the bootloader should be loaded.

The problem with using RAM to store data between resets is that the data stored in memory

is NOT guaranteed to persist between the power cycle or reset. The data may be preserved

in most circumstances but undoubtedly is occasionally cleared out or corrupted, resulting in

unexpected behavior. Assuming that the RAM data persists between power cycles will result in

a software bug that is elusive and difficult to consistently repeat.

EEPROM regions are the rarest and typically will not be found on most

microcontrollers. EEPROM provides a developer with a working region for calibration

data that is separate from flash and provides a safe means for updating the data without

the risk of accidentally erasing application code. Microcontrollers that don’t include

EEPROM will typically provide flash libraries that can be used to simulate EEPROM

behavior but risk application code corruption.

The peripheral memory region is the most interesting to driver developers. The

peripheral memory region contains the registers that control the microcontroller’s

peripherals, such as general-purpose input and output, analog-to-digital converters,

serial peripheral interface, and many others. In order to create a driver, a developer must

map the driver code to the memory region that the peripheral registers exist in. Once

again, these regions will vary from one microcontroller to the next. In this chapter, we

will discuss general techniques and strategies for driver development, and then in the

next chapter we will dive into the nitty-gritty details.

Chapter 3 Device Driver Fundamentals in C

64

The memory regions for a microcontroller are not required to be contiguous in any

shape or form. A memory map may start with memory locations for application code,

switch to RAM, then peripherals, and then back to application code. There can even

be large spaces between usable memory locations that are commonly referred to as

memory-map holes. An example of a memory map with holes can be seen in Figure 3-2.

Flash

GPIO

UART

Timer

ADC

0x000000

0x200000

0x100000

0x600000

unmapped

Figure 3-2.  Generic microcontroller memory map

�Planning the Driver Interfaces
Resource-constrained embedded-software development has a tendency toward chaos.

Back when the C programming language was originally introduced, best practices and

layered software architectures did not exist. Embedded software was littered with goto

statements, driver code was tightly coupled to the application code, and there was no

distinction as to where the middleware started or ended. The result was a giant code

mess that rightly deserved the name spaghetti code.

Now, for those readers who have not yet drawn the connection, Beningo is an Italian

name, and like any good Italian, a love of pasta is a given. In this instance, an analogy

between pasta and the way that software is architected is completely appropriate. Take

a moment to consider this: spaghetti is chaotic; noodles intertwine going this way and

that way, resulting in a complete lack of structure. Writing unstructured code is exactly

like spaghetti; with each bite you have no clue what you are going to get! (At least with

spaghetti it will be tasty!)

On the other hand, there is lasagna! The noodles are layered, giving the meal

structure and order. Code developed using layers is not only easier to understand, but

it also has the potential to have one layer removed and a new layer added, basically

Chapter 3 Device Driver Fundamentals in C

65

allowing for reuse and ease in maintainability. (At times, I have been tempted to swap

out lasagna layers, but I’ve always found it’s just better to eat it!) Remember—we want

to write lasagna code, not spaghetti code! Figure 3-3 is an example software architecture

a developer might choose that decouples the different software layers. We discussed

software architectures back in Chapter 1.

Figure 3-3.  The lasagna software architecture

Writing software in a layered, lasagna-like manner allows the developer to easily

define where one software type (layer) ends and another begins. At that point, we have

what is known as a software interface. In Figure 3-3, we have four possible interfaces

that need to be clearly defined. The interface allows the software layer directly above

to interact with the software or possibly the hardware that exists beneath it. Defining a

clean and extensible interface allows developers to not only organize their code but also

provide a common interface that can be reused from one application to the next.

Starting in Chapter 6, we will be discussing in detail how to walk through and

properly design and plan the interfaces. We will even walk through how to develop the

interfaces for the hardware abstraction layer. At this point, in order to properly plan a

software interface, a developer should look at the memory map that we discussed in

the previous section and identify the low-level components that may be required in the

driver layer. A similar list can be developed for each component that will exist in the

middleware and application layers. The result may be a component diagram that looks

like Figure 3-4.

Chapter 3 Device Driver Fundamentals in C

66

The component interfaces occur where one layer touches another. The interface

will consist of functions that result in some action being taken by the component,

such as toggling a pin state, setting a register, or simply reading data. In order for

those functions—the interface—to behave as expected, it can be extremely useful for

developers to create a contract relationship between the interface and the developers

who use it.

�Design by Contract
Software interfaces can get complicated very quickly. A modern API and HAL may have

over a hundred interfaces that are used to get the system to behave in the desired way.

One method that can be used to ensure that developers have a clear understanding

of how to use the interface is to use design-by-contract.1 Design-by-contract is a

methodology developers can use to specify pre-conditions, post-conditions, side

effects, and invariants that are associated with the interface. Every component then

has a contract that must be adhered to in order for the component to integrate into the

application successfully. Figure 3-5 demonstrates how design by contract works.

Figure 3-4.  Component identification

1�https://en.wikipedia.org/wiki/Design_by_contract

Chapter 3 Device Driver Fundamentals in C

https://en.wikipedia.org/wiki/Design_by_contract

67

As developers, we must examine a component’s inputs, outputs, and the work (the

side effects) that will be performed. The pre-conditions describe what conditions must

already exist within the system prior to performing an operation with the component.

For example, a GPIO pin state cannot be toggled unless it first has the GPIO clock

enabled. Enabling the clock would be a pre-condition or a pre-requisite for the GPIO

component. Failing to meet this condition would result in nothing happening when a

call to perform a GPIO operation occurs.

Once the pre-conditions for a function have been met, there may be inputs that are

provided to the component so that it can carry out its function. An example would be

toggling the state for a GPIO pin. The interface may have a function designed to elicit this

behavior that requires the pin number to be passed in to properly identify the pin that will

be toggled. Some interfaces may require no additional inputs other than making a call to

the interface, while others may require a dozen or more inputs to get the desired behavior.

If the pre-conditions are met and the input data are valid, a developer would expect

there to be a resulting side effect. A side effect is basically just that something in the

system changes. Maybe a memory region is written or read, an i/o state is altered, or

data is simply returned. Something useful happens by interacting with the component’s

interface. The resulting side effect then produces post-conditions that a developer can

expect. The system state has changed into a desired state.

Finally, the outputs for the component are extracted. Perhaps the interface returns

a success or a failure flag—maybe even an error code. Something is returned to let the

caller know that everything proceeded as expected and the resulting side effect should

now be observable.

Component

Errors /
Exceptions

Preconditions

Inputs Outputs

Post-conditions

Side Effects

Figure 3-5.  Design by contract

Chapter 3 Device Driver Fundamentals in C

68

DEFINITIONS

Pre-conditions are conditions required to be met prior to the function being called. Pre-

conditions are specified in the component contract, which frees the function from having to

check the conditions internally.

Post-conditions are conditions guaranteed to be met when the component has completed

execution provided that all the pre-conditions have been met.

Side effects are the effects that the called function has on the system when it is executed.

The side effect is the useful work that is performed by the function.

Invariants are conditions that are specified across the application that must be met to use the

component. For example, when the restrict keyword is being used with a pointer, which tells

the compiler the input will not be used anywhere else within the program.

�Assertion Fundamentals
Before moving on to discuss driver models and the different methods embedded-

software developers use to create drivers, it is important that we take a brief moment

to review an important construct within the C programming language that is usually

neglected or abused. The construct is the assert macro, which allows a developer to test

assertions about the software.

The best definition for an assertion that I have ever encountered is as follows: “An

assertion is a Boolean expression at a specific point in a program that will be true unless

there is a bug in the program.”2 Assertions can be used to make sure that the program

state is exactly what we expect it to be. If the state is something else, an assertion will

stop execution and provide debug information, such as the file and line number where

the assertion went wrong. A developer can then dive in and understand what happened

before the application has the chance to change states.

The assert macro is defined in the assert.h header file. The assert macro

generally takes the form shown in Figure 3-6. If the assertion is false, a developer-defined

function is called to notify the user about the failed condition. In this case, when the

assertion is false, a message will be printed over the UART that lists the file and line

number of the failed assertion.

2�http://wiki.c2.com/?WhatAreAssertions

Chapter 3 Device Driver Fundamentals in C

http://wiki.c2.com/?WhatAreAssertions

69

The reason that I bring up assertions at this point, even though they are really

beyond the scope of this book, is to point out that assertions are a great way to check

inputs, outputs, pre-conditions, and post-conditions for interfaces and functions that are

using design-by-contract interface definitions. A developer can use assert to verify that

the conditions and inputs are met, and if not then there is a bug in the application code

and the developer can be instantly notified that they did something wrong.

Using assertions is straightforward. A developer determines what the precondition

is to the function and then develops an expression to test that condition. For example,

if function x requires that the input be less than 150, a developer would check the pre-

condition in the function using code like that found here:

void Function_X(uint8_t input)

{

 assert(input < 150);

 // Function main body

}

Every input and pre-condition should be checked at the start of a function. This is

the developers’ way to verify that the contract has been fulfilled by the component user.

The same technique can also be used to verify that the post-conditions, output, and even

the side effect are correct.

Now, some readers may be thinking to themselves that given enough assertions

in the code, the overhead and the code space could quite quickly become too much.

Assertions are meant to catch bugs in the program, and in many cases they are only

enabled during development. Disabling assertions will reclaim code space and a few

instruction cycles. Defining the macro NDEBUG will change the assert macro to an empty

macro, essentially disabling the assertions.

Figure 3-6.  Example assert macro implementation

Chapter 3 Device Driver Fundamentals in C

70

Pay attention! This is critical! If assertions are going to be disabled for production,

the final testing and validation needs to be performed with the assertions disabled. The

reason for disabling them is that evaluating the expressions does affect the real-time

performance, even if it is only a few clock cycles. Changing the execution time after

testing could have completely unexpected consequences.

�Device Driver Models
There are many ways that a low-level driver can be developed for a microcontroller. The

two generic models that we are going to review are blocking and non-blocking drivers.

Figure 3-7 compares each model using a sequence diagram, with lines representing the

application’s life line. The life line shows the application code’s access to the CPU and

the device driver’s access to the CPU.

A blocking driver has exclusive access to the CPU and will not yield the CPU until

the driver operation is completed. A typical example is the way that printf is set up in

an embedded system. Calling printf first formats the desired string and puts the first

character into the UART transmit buffer. The program then waits until the character is

completely transmitted before entering the next character into the buffer. The process

repeats until all characters are transmitted. Only then will printf return and allow

the next line of code to execute. A blocking driver has the potential to destroy the real-

time performance of an embedded system, and care must be taken to understand the

minimum, maximum, and average execution times for drivers written in this manner.

The alternative strategy is to use a non-blocking driver. A non-blocking version for

printf, which is a non-standard implementation, would prepare the string and place

the first character into the transmit buffer. Once the character is in the buffer, printf

would then return to the main application and allow it to continue executing while the

character was being transmitted. The application would then use an interrupt to detect

when the character transmission was complete so that the next character could be

placed in the buffer.

Chapter 3 Device Driver Fundamentals in C

71

On the one hand, blocking drivers can be very simple since they don’t need to return

to the main application and perform monitoring functions. The problem is that the real-

time performance can be severely affected. Alternatively, non-blocking implementations

can be used, which will preserve the real-time performance but will potentially increase

the complexity for the application. The application must now in some way monitor for

when the next character is ready to be placed into the buffer. The two primary ways that

the buffer can be monitored are polling- or interrupt-driven behavior.

�Polling Versus Interrupt-Driven Drivers
The easiest way to monitor that an event occurs in the system is to just periodically check

if the complete flag has been set. Periodically checking a flag or register bit is known as

polling. We basically ask, what’s the flag state now . . . now . . . now . . . now . . . how about

now . . . over and over until the flag is set. Once the flag is set, the application performs its

next operation. Polled methods are simple but very inefficient. Clock cycles are wasted

simply checking whether something should be done now or later.

A perfect example showing how the real-time performance can be dramatically

affected by a blocking driver or function can be seen in Figure 3-8. The figure shows

the timing required to print “Hello World” using a standard baud rate of 9600 bits per

second. Using “Hello World” is a relatively simple string, yet, upon examining the figure,

the reader will discover that it is taking approximately 12 milliseconds to execute!

(a) (b)

Application Driver Application Driver

Figure 3-7.  (a) blocking driver model (b) non-blocking driver model

Chapter 3 Device Driver Fundamentals in C

72

The standard implementation for printf can get even worse! Printing a fixed

string doesn’t help when debugging a system. The data that is transmitted often

includes variables and data that will change from one iteration to the next and require

substitution. Figure 3-9 shows the same blocking implementation that is now printing

out the system state using printf(“The system state is %d”, State). The result is

that, on average, the transmission takes 21 milliseconds!

Figure 3-8.  Blocking printf timing to print “Hello World”

Figure 3-9.  Blocking printf timing to print “The system state is %d”, State

Obviously, blocking an application for tens of milliseconds is going to be

unacceptable in a real-time application. The alternative to using polling is to use

interrupts. Every microcontroller has interrupts for nearly any event-driven situation

that a developer may be interested in. They can be much more efficient and by their very

nature are non-blocking. Setting up and configuring an interrupt can be a complex and

Chapter 3 Device Driver Fundamentals in C

73

error-prone endeavor. A developer needs to carefully weigh their options and select the

method that is most appropriate for the situation.

If a developer were to go back to their printf implementation and decide to

implement a non-blocking solution that uses the UART transmission complete interrupt

to load a new character into the transmit buffer, they would see a drastic change in their

application’s performance. First, the new implementation would process the string and

prepare it to be transmitted, which, depending on the string’s complexity, could take

anywhere from 0.5 to 2.0 milliseconds for the strings used in the blocking example. Once

the first character was transmitted, the remaining characters would be transmitted in an

interrupt that executed approximately every 1.2 milliseconds, as shown in Figure 3-10.

Figure 3-10.  Transmit interrupt frequency for 9600 bauds

The major concern then becomes how much CPU time the interrupt is using.

Interrupting the application every 1.2 milliseconds could potentially affect the

application. A developer will want to understand how long the interrupt will be

executing every 1.2 milliseconds. Figure 3-11 shows the average UART transmit

execution time for this example. The interrupt requires approximately 35 microseconds

to clear the transmit-complete flag and then copy the next character into the transmit

buffer.

Chapter 3 Device Driver Fundamentals in C

74

That is a stark difference in performance for printf between blocking and non-

blocking methods! No application code executes for 12 to 21 milliseconds in the blocking

implementation, while non-blocking blocks for 1 to 2 milliseconds up front and then

interrupts for 35 microseconds every 1.2 milliseconds.

MODERN-DAY PRINTF IMPLEMENTATIONS

On a modern 32-bit ARM architecture, developers no longer need to be concerned with

the timing required to perform printf statements. There are multiple methods available

to developers that will allow even complex printf statements to be transmitted in

microseconds.

These implementations include:

	1.	S egger real-time trace debugger capabilities

	2.	U tilizing the ARM ITM module

For debuggers and microcontrollers that do not include these capabilities or similar

capabilities, developers will still need to be very careful with their printf statements.

Interrupts are not the only method that can be used to minimize how long a

driver blocks the main application for. Developers can also use the direct memory

access (DMA) controller. In a DMA implementation, a developer configures the DMA

Figure 3-11.  UART transmit interrupt duration

Chapter 3 Device Driver Fundamentals in C

75

controller to interrupt and handle data movement from memory into a peripheral or

from a peripheral to memory. The advantage to a DMA is that it is very fast and does

not require the CPU. The CPU can be in a low-power state or executing other code

while the DMA controller is moving data around the system. Considering the printf

example, a developer could set up a memory buffer, then configure the DMA to transmit

x characters from the buffer and into the UART transmit buffer. This implementation

would then remove the periodic interrupt and allow the CPU to focus on the application

code. An example of how a DMA setup would look can be found in Figure 3-12.

RAM

DMA Peripheral

Figure 3-12.  DMA-controlled data transfer

DMA is a powerful tool for developers but can be a complicated topic for a first-

time user. Using DMA can also add unnecessary complexity to the software or result

in abstractions and data movement that is not obvious from a quick look at the

system. The efficiency can be well worth the trouble, however. Just don’t forget: most

microcontrollers have a limited number of DMA channels, so use them wisely!

Chapter 3 Device Driver Fundamentals in C

76

CASE STUDY—USING DMA FOR ATTITUDE DETERMINATION AND CONTROL

Back when I was working on my master’s degree at the University of Michigan, I was involved

in the embedded-software design and implementation for a small satellite. My primary focus

was the main flight-computer code that interacted with a half dozen or more subsystems

and orchestrated the behavior for the entire satellite. One such subsystem was an Attitude

Determination and Controls (ADACs), and it was experiencing issues retrieving and analyzing

its data. Periodically, data would be lost as if the processor did not have enough throughput to

handle the data stream.

As I sat down to review the firmware with the younger and less experienced engineer, I

discovered that the implementation was flawless. The processor just could not keep up with

the data rate, analysis, and communication simultaneously. Changing the processor was not

an option. The alternative and only chance was to use the DMA to handle the data acquisition

and memory storage and relieve the CPU of the responsibility. After a few short discussions

and what could not have been more than an hour of updates to the drivers and software, the

ADACs subsystem was operating flawlessly.

All that was needed was offloading some data handling from the CPU to the DMA controller.

�Driver Component Definition
At times, it feels like there are a million different terms that float around the software

development process. In some cases, these terms are used interchangeably even though

there may be slight differences. In this section, we are going to explore the terms that are

most often associated with drivers and framework development in the hopes that we

can elucidate them while at the same time describing how to organize a driver from a

high level.

A module is the fundamental unit that is used to develop a driver (or even embedded

software in general). Simple drivers will contain a single module, while a complex

driver such as a Wi-Fi driver may contain a dozen modules. A module is simply the

combination of a header file and the source file that is associated with it. The header file

contains the interface or the APIs that are used by the higher-level application code to

run the module code. The source file contains the implementation details and all the

details required to do the work that is exposed in the interface.

Chapter 3 Device Driver Fundamentals in C

77

As very simple drivers, modules may sometimes even be referred to as components.

A component is a collection of modules that work together to fulfill a software feature.

A complex driver, like the Wi-Fi driver, is a single component that may be made up of

several modules. Very simple components may simply have their header and source files

added to a project. Complex components usually have a folder structure associated with

them so that the component can be organized and kept separate from other code.

A driver will typically have at least three different files associated with it:

•	 The interface

•	 The source code

•	 A configuration module

How these three pieces are organized is completely up to the developer. In some

cases, a developer may choose to create a folder for the entire component and include

all these pieces together at the component’s top level. In other cases, a developer may

decide to create separate folders, one for each piece. There are many possibilities for

how a component can be organized. A few examples can be seen in Figure 3-13.

Figure 3-13.  Component organization

Chapter 3 Device Driver Fundamentals in C

78

DEFINITIONS

Module is part of a program that contains one or more routines. One or more independently

developed modules make up a program.3

Component is an identifiable part of a larger program or construction. A component provides a

specific function for the application. An application is divided into components that in turn are

made up of modules.4

Interface is a boundary across which two independent systems meet and act on or

communicate with each other.5

�Naming Convention Recommendations
There are many ways that a developer can go about naming their interfaces, modules,

and variables. It can be very tempting to create a new naming convention to stand out

from the crowd. The problem with creating a new naming convention is that there are

already great systems in existence for how a developer should name things. A great

example that developers should examine can be found in the following article:

“Perfecting Naming Conventions”6 by Jack Ganssle

Both articles provide developers with a foundation for naming that would be

wise to adopt. There are a few ideas that I would like to highlight that I believe are

critically important. First, developers need to use camel case. This is a widely-accepted

standard within the software industry and deviating from it will dramatically affect code

readability. Personally, I prefer to also capitalize the starting character in variables. That

could just be the proper English showing through from doing so much writing.

3�https://www.techopedia.com/definition/3843/module
4�http://whatis.techtarget.com/definition/component
5�www.webopedia.com/TERM/I/interface.html
6�http://www.ganssle.com/articles/namingconventions.htm

Chapter 3 Device Driver Fundamentals in C

http://www.ganssle.com/articles/namingconventions.htm
https://www.techopedia.com/definition/3843/module
http://whatis.techtarget.com/definition/component
www.webopedia.com/TERM/I/interface.html
http://www.ganssle.com/articles/namingconventions.htm

79

Another convention that I highly recommend is to start with the subsystem and then

work toward the specific. For example, an interface that is going to provide a read of the

digital input/output peripheral would be named:

Dio_Read

The first three letters specify the subsystem followed by an underscore and then the

purpose. This convention flows naturally and makes it very easy for a developer to first

see the main actor and then the purpose for the interface.

�Object-Oriented Programming in C
Developers should consider developing their drivers and their application code in

an object-oriented manner. The C programming language is not an object-oriented

programming language. C is a procedural programming language where the

primary focus is to specify a series of well-structured steps and procedures within

its programming context to produce a program.7 An object-oriented programming

language, on the other hand, is a programming language that focuses on the definition of

and operations that are performed on data.

There are several characteristics that set an object-oriented programming language

apart from a procedural language. These include:

•	 Abstraction

•	 Encapsulation

•	 Objects

•	 Classes

•	 Inheritance

•	 Polymorphism

Despite C not being object-oriented, developers can still implement some concepts

in their application that will dramatically improve their software. While there are ways

to create classes, inheritance, and polymorphism in C, if these features are required,

developers would be better off just using C++. Applications can benefit greatly from

using abstractions and encapsulation. Let’s explore these concepts in detail.

7�https://www.techopedia.com/definition/8982/procedural-language

Chapter 3 Device Driver Fundamentals in C

https://www.techopedia.com/definition/8982/procedural-language

80

DEFINITIONS8

Abstraction is revealing functionality and software features while hiding the implementation

details.

Encapsulation is wrapping related data and code together into a single unit.

Objects are any entity that has a state or known behavior.

Classes are a logical software entity that is a collection of objects.

Inheritance is when a class inherits the characteristics of another class.

�Abstractions and Abstract Data Types (ADTs)
An abstraction hides the underlying implementation details while making the

functionality available to developers. For example, a well-implemented GPIO driver

will provide an interface that tells a developer what can be done with the driver, but the

developer doesn’t need to know any details about how the driver is implemented or even

on what hardware it runs. Abstractions hide the details from developers, creating a black

box that simplifies what they need to know to use the software.

Abstractions don’t only apply to component interfaces. Abstractions can just as

easily be applied to data types. Abstract data types (often written as ADT for short) are

data types whose implementation details are hidden from the view of the user for a

data structure. There are several different methods that can be used to create an ADT in

C. One method that is straightforward can be done in five easy steps. Let’s look at how

we can create an ADT for managing a memory stack.

First, a developer defines the abstract data type. The ADT in C is usually defined as a

pointer to a structure. The ADT is declared within a header file without any underlying

details, leaving it up to the implementer to fully declare the ADT in the source module.

An example of an ADT would be a StackPtr_t, NodePtr_t, or QueuePtr_t, to name

a few. If a developer were to define an ADT for a stack, they would start by defining

the code shown in Figure 3-14 in the stack.h file. The details for the members in

StackStruct_t are completely hidden from the users’ perspective. Any interaction with

StackPtr_t must be done using predefined operations.

8�http://www.javatpoint.com/java-oops-concepts

Chapter 3 Device Driver Fundamentals in C

81

The second step to creating an ADT is to define the operations that can be performed

on the data. The operations that may be performed on an ADT are completely

dependent on the purpose of the ADT. For example, an ADT for a stack might include the

following operations:

•	 initialization

•	 pushing data

•	 popping data

•	 destroying the stack

•	 checking to see if the stack is full

•	 checking to see if the stack is empty

Don’t forget that using an ADT is quite different from the way a developer would

normally manipulate data. Typically, a developer would define the data and write

code that directly manipulates the data. With an abstract data type, developers create

an interface where the data is indirectly modified behind the scenes, leaving the

implementation to the ADT implementer and letting the application developer simply

use the data type.

Next, the ADT interface specification needs to be completed. The interface

specification includes the function prototypes for all the public operations that can

be performed on the ADT. The interface specification will be in the ADT header file.

Considering the stack example, a developer might find that the interface specification

looks something like the code shown in Figure 3-15.

Figure 3-14.  Defining an ADT

Figure 3-15.  Stack ADT interface

Chapter 3 Device Driver Fundamentals in C

82

Next, the ADT developer would either create the ADT implementation or a template

for the implementation that would be filled in later. The ADT implementation could

change from one application to the next. In fact, the ADT implementation could

change during project development, and one major benefit to using an ADT is that

the application that uses the ADT doesn’t need to change. The implementation details

are in the source module and “hidden” from the higher-level application developer.

The use of an ADT provides a developer with a high degree of flexibility. An example

implementation for the stack ADT can be found in Figures 3-16 through 3-19.

Figure 3-16.  ADT implementation data structure

Figure 3-16 shows the implementation for the ADT. The implementation structure

uses an array with a predefined size to store the stack value and then has a position

member to track where in the stack the next value will be added or removed.

Chapter 3 Device Driver Fundamentals in C

83

The example implementation doesn’t even allocate the memory for the stack until

runtime. The Stack_Init function is used to dynamically allocate memory for the

ADT. The user has no clue what the implementation does or how it does it and truthfully

doesn’t need to know or care! (Unless it could affect the real-time performance.) All the

application code needs to do is create a pointer that will be used to store the location for

the stack. That pointer should never even be used by the developer directly but only be

used as the data object that is going to be manipulated by the operation functions.

The initialization function for the stack in this implementation is providing a robust

implementation. First, it is checking the malloc return value, which will return zero if the

memory could not be allocated. If everything goes as expected, the implementation will

initialize the stack location member and set the return value.

Figure 3-17.  Stack method initialization

Chapter 3 Device Driver Fundamentals in C

84

The final step to creating the ADT is to put the ADT to the test. The ADT can be tested

by writing some application code. The application code should declare an ADT and

then manipulate the data through the interface specification. An example initialization

and test for the stack ADT is shown in Figure 3-20. In the example, the stack.h header

file is included in the application. The ADT from the user application’s point of view is

nothing more than a pointer. The Stack_Init function is called, which then performs

the operation on the stack data to allocate memory and prepare it for use.

Figure 3-18.  Stack ADT push method

Chapter 3 Device Driver Fundamentals in C

85

Figure 3-19.  Stack ADT pop method

Figure 3-20.  Using the stack ADT

Finally, some data is pushed onto the stack by calling Stack_Push. Note that in the

example application we are not checking the return values. This is something that a

developer should do but that the author decided to not show at this point in time.

Creating an ADT is as simple as that! Using them in your software will hide the

implementation details of a data structure, thus improving software maintenance, reuse,

and portability. Developers who use ADTs will find that they are able to quickly adapt to

changing requirements and save time by not having to dig through code searching for

obscure data references.

Chapter 3 Device Driver Fundamentals in C

86

�Encapsulation and Data Hiding
Encapsulation and data hiding are an important concept that embedded-software

developers should follow. Encapsulation is the idea that related data, functions, and

operations should all be wrapped together into a single unit. For example, all the general-

purpose input and output operations would be wrapped together in a single GPIO

module. Any operations and data that involve the GPIO would be put into that module.

The idea can go even further by considering data hiding. Data hiding is where

developers hide the data and the implementation from the module user. It’s not

important that the caller understand the implementation, only how to use the interface

and what its inputs and outputs are.

�Callback Functions
Callback functions are an essential and often critical concept that developers need

in order to create drivers or custom libraries. A callback function is a reference to

executable code that is passed as an argument to other code that allows a lower-level

software layer to call a function defined in a higher-level layer.9 A callback allows a driver

or library developer to specify a behavior at a lower layer but leave the implementation

definition to the application layer.

DEFINITIONS

Callback is a reference to executable code that is passed as an argument to other code that

allows a lower-level software layer to call a function defined in a higher-level layer.

A callback function at its simplest is just a function pointer that is passed to another

function as a parameter. In most instances, a callback will contain three pieces:

•	 The callback function

•	 A callback registration

•	 Callback execution

9�https://en.wikipedia.org/wiki/Callback_(computer_programming)

Chapter 3 Device Driver Fundamentals in C

https://en.wikipedia.org/wiki/Callback_(computer_programming)

87

Figure 3-21 shows how these three pieces work together in a typical callback

implementation.

Driver
Library
Kernel

Application

CallbackMain

Callback_Register

Signal Handler

Invoke
Callback

Figure 3-21.  Callback example usage

First, a developer creates the library or module that will have an implementation

element that is determined by the application developer. An example might be that

a developer creates a GPIO driver that has an interrupt service routine whose code is

specified by the application developer. The interrupt could handle a button press or

some other functionality. The driver doesn’t care about the functionality, only that at

runtime it knows what function should be called when the interrupt fires. The code that

will invoke the callback function within the module is often called the signal handler.

Next, there needs to be some way to tell the lower-level code what function should

be executed. There are many ways that this can be done, but for a driver module, a

recommended practice is to create a function within the module that is specifically

designed to register a function as a callback. Having a separate function to register the

callback function makes it very clear to the developer that the callback function is being

registered to a specific signal handler. When the register function is called, the desired

function that will be called is passed as a parameter into the module, and that function’s

address is stored.

Finally, the application developer writes their application, which includes creating

the implementation for the callback and initialization code that registers that function

with the library or module. When the application is executed, the low-level code has the

Chapter 3 Device Driver Fundamentals in C

88

callback function address stored, and when the feature needs to execute, it dereferences

the callback function and executes it.

There are two primary examples that a developer can consider for using callbacks.

First, in drivers, a developer will not know how any interrupt service routine might

need to be used by the end application. If the developer is creating a library for some

microcontroller’s peripherals, a callback could be used to specify all the interrupts’

behaviors. Using the callback would allow the developer to make sure that every

interrupt had a default service routine in the event that the application developer did not

register a custom callback function. When callbacks are used with interrupts, developers

need to keep in mind that the best practices for interrupts need to be followed.

Second, callbacks can be used whenever there is common behavior in an application

that might have implementation-specific behaviors. For example, initializing an array is

a very common task that needs to be performed within an application. What if, for some

applications, a developer wants to initialize array elements to all zeroes, while in another

application they want the array elements initialized to random numbers? In this case,

they could use a callback to initialize the arrays.

Examine Figure 3-22. The ArrayInit functiontakes a pointer to an array with

element’s size and then it also takes a pointer to a function that returns integers. The

function at this point is not defined but can be defined by the application code. When

ArrayInit is called, the developer passes in whatever function they choose to initialize

the array elements. A few example functions that could be passed into ArrayInit can be

seen in Figures 3-23 and 3-24.

Figure 3-22.  Function with callback

Chapter 3 Device Driver Fundamentals in C

89

The functions Zeros or Random are passed into ArrayInit depending on how the

application developer wants to initialize the array.

�Error Handling
One of the biggest problems with the C programming language is that there really is

not a great way to do error handling or error trapping. Object-oriented languages have

the ability to try a code block and if an error occurs to catch the error. C has no such

capability. The best that C offers is the ability to check a function’s return value.

The problem with checking a function’s return value is that developers are really

really bad at checking return values. It is not mandatory that return values are checked,

so many developers will just ignore them. Ignoring return values is of course just bad

discipline. In many circumstances, error handling in C is done by returning error codes

or that the function completed successfully.

So, how can a developer handle errors in their drivers? The best approach that

developers can take is to create a list of all the possible errors that can occur in the driver

that they are creating. From that list, create an enumeration that contains all the error

codes. Review the list and identify errors that the driver needs to actively manage. These

errors might include transmit flag complete never sets, receive flag complete never sets,

Figure 3-23.  Initialize elements to 0

Figure 3-24.  Initialize elements to random numbers

Chapter 3 Device Driver Fundamentals in C

90

transmission is interrupted, and so forth. Do everything necessary to try to recover from

an error state, and if the driver is unable to do so, don’t hang there forever, but rather

return an error code that can help developers debug the problem.

�Leverage Design Patterns
Over time, as developers get more experience, they begin to realize that there are many

design patterns in embedded software that appear frequently. A design pattern is a

general reusable solution to a commonly occurring problem.10 Using a design pattern

that already exists and solves a common design problem can dramatically speed up

software development and ensure a more robust solution. There are many design

pattern examples that embedded software developers can utilize. A great example is the

design pattern that is used to receive serial data on a UART.

The design pattern for receiving and processing serial data can be seen in Figure 3-25.

An interrupt is used to receive a single character from the UART. The character is read into

a buffer and then a signal is used to notify a task that there is a character that is ready to

be processed. The design pattern is simple, but it does quite a few things for a developer,

such as:

•	 Minimizes software overhead that would be associated with a polling

architecture

•	 Minimizes processing in an ISR by only reading in the character

•	 Handles the hard real-time requirement (receiving a character)

and signals another task to handle the soft real-time requirement

(processing data)

•	 Provides deterministic behavior to the system

10�https://en.wikipedia.org/wiki/Software_design_pattern

Chapter 3 Device Driver Fundamentals in C

https://en.wikipedia.org/wiki/Software_design_pattern

91

Serial BusRead Character

Store In Buffer

Signal Data Available

Uart Rx ISR

Serial Processing Task

Process Data

Receive Signal

Figure 3-25.  UART Receive design pattern

Design patterns are the puzzle pieces that can be used to quickly build an embedded

system. The more that an application can leverage design patterns, the faster the

software can be developed. Many drivers will adhere to very common design patterns

that we’ve already discussed in this chapter, such as blocking and non-blocking

architectures. Later in the book, as we dive into specific examples for developing

different peripheral drivers, these design patterns will become clearer.

�Expected Results and Recommendations
So far in this chapter, we have explored quite a few concepts that will help developers

think through how they should organize and begin implementing their device drivers.

There are many benefits to the techniques that we have discussed, which include a more

organized, maintainable code base. There are several results related to the software that

developers need to be aware of.

First, organizing the code base into components creates a very organized project.

Components are easy to move from one project to the next and easy to find in the project

structure. One potential drawback to organizing a project in this manner is that the more

modules that are added to a project, the more files in the project, which then leads to

more folder structures. The result can be:

•	 Slower compile times due to opening and closing so many files

•	 Complex include list since each component will need to be added to

the compiler and linker include path

Chapter 3 Device Driver Fundamentals in C

92

In general, these are minor issues, and developers should not let them get in their

way when developing organized drivers. It’s just important to recognize that it isn’t all

red roses and green grass.

Second, assertions are great for verifying that an assumption for inputs, pre-

conditions, post-conditions, and so forth are correct, but they aren’t exactly free.

Every expression that is evaluated in the assertion uses up some processing time to be

evaluated. While this may only be a few dozen instructions and execute very quickly, it

can influence the real-time system performance. Even worse than the performance, the

assertion takes up a little bit of code space on the microcontroller. Over time, a project

can easily contain an assertion density approaching 3 to 5 percent, which may make

the code look significantly bloated. These are reasons why assertions are often disabled

before testing and production release.

Third, developers need to make sure that they are careful when they use callbacks. In

many cases, callbacks register a function to an interrupt service routine. Since callbacks

execute in an interrupt, they need to be short, fast, and to the point. Developers need to

make sure that they follow best practices for using callbacks, which were discussed in the

callback section.

Finally, developers need to be careful how far they carry the “object-oriented C”

concept. It’s a great idea to encapsulate data, use a few abstract data types, and so forth,

but eventually a point will be reached where it may just make sense to upgrade to C++.

I’ve had the pleasure of teaching a session once on how to create a class using the C

language (not by choice). If you need full object-oriented behavior, just use an object-

oriented language.

�Going Further
There are several activities that readers can perform in order to consolidate the driver

concepts that we have just discussed. Drivers are an important foundation in embedded

systems, and it is critical to have a clear understanding of these basic concepts. Some

additional activities that are recommended include:

•	 Find the memory map for your favorite processor. What memory

regions do the following occupy?

•	 Flash

•	 RAM

Chapter 3 Device Driver Fundamentals in C

93

•	 GPIO

•	 SPI

•	 Are there any memory-map holes that you can find? Are there any

memory regions where the memory can be expanded?

•	 Make a list of all the inputs, outputs, pre-conditions, and post-

conditions that would be associated with a GPIO driver.

•	 In your favorite IDE, review how to enable assertions. Create an

example application with printf and assert. Create a simple

function and explore the following:

•	 How to use printf and assert

•	 The timing to use printf

•	 The overhead associated with assert

•	 Practice enabling and disabling assertions. Can you measure the

effect this has on your code?

•	 Define your own coding conventions.

•	 How are you going to organize your software components?

•	 What naming conventions are you going to use?

•	 Identify any other conventions that you will use when developing

software going forward.

•	 Test your skills by creating an abstract data type. Follow the stack

example and implement the stack ADT. Developers interested in the

Stack example source can download it here.11

•	 Create a simple callback function application that initializes an array.

Create a callback to initialize an array to all zeroes and another to

initialize the array to random numbers.

11�http://www.beningo.com/wp-content/uploads/Downloads/ATP.zip

Chapter 3 Device Driver Fundamentals in C

http://www.beningo.com/wp-content/uploads/Downloads/ATP.zip

95
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_4

CHAPTER 4

Writing Reusable Drivers

“Software is like entropy. It is difficult to grasp, weighs nothing, and obeys
the second law of thermodynamics; i.e., it always increases.”

—Norman Ralph

�Reusable Drivers
Writing a driver that can be used from one application to the next can be very helpful to

embedded-software developers. Once a driver is written, developers can focus on the

application code and not worry about the bits and the bytes. Driver design patterns can

be reused not only on the same hardware, but also across multiple platforms with only

minor changes required to adjust the driver to access the different memory regions.

In this chapter, we will examine the different methodologies that developers can use

to map into peripheral memory, and then we will demonstrate how each technique can

be used.

�Deciphering the extern and static Keywords
The default linkage for a variable and function in the C programming language is extern.

Having an extern default linkage means that all functions and any variables defined at

the file scope are global variables and functions. In general, having global variables and

making all functions available within a program is not a good programming practice. If

everything in an application can be potentially touched and manipulated by any other

part of the application, there is an increased probability that multiple points in the

application may use a global variable without protecting its access, and this can result in

96

a bug. These bugs are usually difficult to find and reproduce, which makes them time-

consuming to fix.

One programming language best practice is to limit the scope of all variables and

functions. Keep data and functions need-to-know. Keeping the scope limited will

prevent another application component, or a developer, from accidentally misusing or

trampling over data that they are not supposed to be using.

Junior-level embedded-software developers will often be aware that using global

variables is a frowned-upon practice and will avoid using the extern keyword. The

problem is that by default the extern keyword is implicitly placed before functions and

variables at a file-scope level. This means that if you don’t specify the linkage type, the C

language toolchain will make everything global!

For example, look at the simple module shown in Figure 4-1. The module looks

completely valid. The module would compile without errors or any warnings. However,

to the compiler and linker, the application shown in Figure 4-1 looks like the program

shown in Figure 4-2.

Figure 4-1.  extern implicitly

Chapter 4 Writing Reusable Drivers

97

In C, the best way to control the default external linkage in a component is to employ

the static keyword. This is a storage-class specifier that tells the compiler to limit the

variable’s or function’s scope while at the same time telling it to allocate storage for the

variable that will persist throughout the application’s lifetime.1 Static overrides those

implicit extern keywords that are automatically put in front of functions and variables

and instead makes those variables and functions internally linked. The result: variables

and functions that are only available within a single module. Figure 4-3 shows how

static would work in the program that previously had external linkage.

1�C in a Nutshell, pages 156, 165

Figure 4-2.  extern explicitly

Figure 4-3.  Explicitly limiting function and variable scope

Chapter 4 Writing Reusable Drivers

98

�Deciphering the volatile Keyword
There are times in an embedded-software application where the application will be

dependent upon changes in the physical hardware. The software will need to read a

hardware flag, such as a UART transmission-complete flag. A simple example of what

this code might look like can be seen in Figure 4-4. The code first defines a pointer to the

location in memory where the UART_REGISTER is. The code then waits in a while loop for

the UART_TX_FLAG in the UART_REGISTER to be set.

The problem with the code in Figure 4-4 is that the compiler will look at the code and

realize that in the while loop, UART_REGISTER & UART_TX_FLAG is a constant expression.

Nowhere in the software does that value ever change! So, the compiler will do what it is

designed to do and optimize the code to something like Figure 4-5.

The resulting application that is shown in Figure 4-5 is obviously not what the

developer had intended, but it does teach an important lesson. When accessing

hardware, developers need to reach into the C programming toolbox and pull out the

volatile keyword. This instructs the compiler to reread the object’s value each time it is

used, even if the program itself has not changed it since the previous access.2 A developer

2�C in a Nutshell, pages 53, 127

Figure 4-4.  Checking for the UART Tx Complete flag

Figure 4-5.  The optimized UART Tx Check code

Chapter 4 Writing Reusable Drivers

99

can prevent the optimized code generation shown in Figure 4-5 by declaring the value

being pointed to by UART_REGISTER as volatile. By doing this, the compiler will recognize

that the expression in the while loop could change at any moment and the value should

be reread to see if it has changed. The updated application can be found in Figure 4-6.

Figure 4-6.  Using the volatile keyword to prevent code optimization

Note where the volatile keyword is located in the updated code. The C statement

is declaring UART_REGISTER as a pointer to a volatile uint8_t. The data is volatile, not

the pointer. The code shown in Figure 4-7 is an example of the wrong place to put the

volatile keyword. The example is showing a volatile pointer to a uint8_t. In general,

having a pointer to a hardware register change is not something that we would want to

have happen in an embedded system.

Figure 4-7.  Improper volatile keyword location

�Deciphering the const Keyword
The const keyword can sometimes be deceptive in the C programming language.

A developer may think that a const is a variable that is constant and cannot be modified

by the application. The const keyword tells the developer that the data location that

is being accessed through the identifier with the const keyword is read-only.3 If the

3�C in a Nutshell, page 57

Chapter 4 Writing Reusable Drivers

100

variable that is being defined as const exists in RAM, a developer could conceivably

create a pointer to the constant variable, typecast off the const, and then change the

value. In many cases, variables declared const in an embedded system will not be stored

in RAM but instead will be in flash. This prevents the constant data from being modified

and really does make const data constant.

A best practice for developing embedded software is to use the const keyword as

often as possible.4 The const keyword does provide a developer some protection through

the compiler if an attempt is made to change the value of an identifier. The primary

places that developers should look to use the const keyword are:

•	 When passing data to a function that should not be modifying

the data

•	 Pointers to hardware registers that should not change during runtime

In general, true constants such as Pi or unchanging configuration values are

defined not through identifiers but through enumerations or the #define macro, with

enumerations being the preferred method.

In the previous section, while looking at the volatile keyword, we saw a pointer

being defined that accessed a hardware register. A variable that is being used to access

hardware probably should not change during runtime. That code could be modified so

that the pointer is defined as const and thus will always point to the correct place in the

hardware memory map to access the UART_REGISTER. The updated code example can be

seen in Figure 4-8. In the example, UART_REGISTER is a constant pointer to data located at

0x100000, which can change at any time (volatile) and is a uint8_t data type.

4�Barr Group Best Practices (Embedded C Coding Standard, page 23)

Figure 4-8.  A const pointer to a volatile uint8_t

Chapter 4 Writing Reusable Drivers

101

�Memory-Mapping Methodologies
There are several options available to developers to map their code into the

microcontroller’s memory regions. The technique used is going to be dependent upon

an engineer’s need to control:

•	 Code size

•	 Execution speed

•	 Efficiency

•	 Portability

•	 Configurability

The simplest techniques tend to not be reusable or portable, while the more complex

techniques are. There are several memory-mapping techniques that are commonly used

in driver design. These methods include the following:

•	 Direct memory mapping

•	 Using pointers

•	 Using structures

•	 Using pointer arrays

Let’s examine the different methods that can be used to map a driver to memory.

�Mapping Memory Directly
Once a developer has thought through the different driver models that can be used

to control the microcontroller peripherals, it is time to start writing code. There are

multiple techniques that a developer could use to map their driver into the peripherals’

memory space, such as directly writing registers or using pointers, structures, or pointer

arrays.

The simplest technique to use—and the least reusable—is to write directly to a

peripheral’s register. For example, let’s say that a developer wants to configure GPIO Port

C. In order to set up and read the port, a developer can examine the register definition

file, find the correct identifier, and then write code similar to that seen in Figure 4-9.

Chapter 4 Writing Reusable Drivers

102

Writing code in this manner is very manual and labor intensive. The code is written

for a single and very specific setup. The code can be ported, but there are opportunities

for the wrong values to be written, which can lead to a bug and then time spent

debugging. Very simple applications that won’t be reused often use this direct register

write method for setting up and controlling peripherals. Directly writing to registers in

this manner is also fast and efficient, and it doesn’t require a lot of flash space.

�Mapping Memory with Pointers
While directly writing to registers can be useful, the technique is often employed

for software that will not be reused or that is written on a very resource-constrained

embedded system, such as a simple 8-bit microcontroller. A technique that is commonly

used when reuse is necessary is to use pointers to map into memory. An example

declaration to map into the GPIO Port C register—let’s say it’s the data register—can be

seen in Figure 4-10.

Figure 4-9.  Direct register access

Figure 4-10.  Mapping a pointer to GPIO Port C

Now, the code in Figure 4-10 has a problem! There is a real possibility that if we try

to write code to read the port or a bit on the port the compiler will optimize out the read!

The compiler will see a while loop that is checking a bit state in the register, as shown

in Figure 4-11, and decide that since there is no place in the while loop that changes

the values stored in the location pointed to by Gpio_PortC, there is no reason to keep

reading the value, and that reading the memory location can be optimized out.

Chapter 4 Writing Reusable Drivers

103

In order to resolve this issue, developers need to use the volatile keyword.

Volatile essentially tells the compiler that the data being read can change out of

sequence at any time without any code changing the value. There are three places that

volatile is typically used:

•	 Variables that are being mapped to hardware registers

•	 Data being shared between interrupt service routines and application

code

•	 Data being shared between multiple threads

Volatile basically tells the compiler to not optimize out the read but instead make

sure that the data stored in the memory location is read every time the variable is

encountered.

The location that volatile appears in the declaration is critical to properly mapping

a peripheral register. Declaring a pointer to a register using the following statement

tells the compiler that the pointer is volatile, not the data being pointed to. The code in

Figure 4-12 is saying the pointer could change at any time when in fact it’s the data in the

register being pointed to that can change.

Figure 4-11.  Checking a register bit

Figure 4-12.  Incorrectly using the volatile keyword for pointer data

The correct declaration would place the volatile keyword immediately following

the data pointer and not immediately after the pointer, as shown in Figure 4-13.

Chapter 4 Writing Reusable Drivers

104

This code tells the compiler that Gpio_PortC is a pointer to a volatile uint32_t.

Remember, when reading a declaration like this, start reading just to the left of

the identifier and read from right to left. This will help provide clarity to the actual

declaration. (I highly recommend reading the section “Complex Declarators” from the

book Expert C Programmers,5 which provides general advice for figuring out what a

declaration means).

With the volatile keyword in the correct place, we now know the compiler won’t

optimize out reading the variable. However, there still is a problem with the declaration

the way it has been written. Take a moment to examine the code shown in Figure 4-14.

It is perfectly legal to increment our pointer Gpio_PortC. After incrementing the

pointer, we could be pointed at Port D, a different register in Port C, or even an SPI or IIC

peripheral. Once a pointer is mapped into memory, a developer should not be allowed

to increment, decrement, or modify the location for the pointer. This is extremely

dangerous! So instead, in our declaration, we should declare our pointer to be constant,

as shown in Figure 4-15.

5�Expert C Programming: Deep C Secrets, Peter Linden (Prentice Hall, 1994)

Figure 4-13.  Correctly using the volatile keyword for pointer data

Figure 4-14.  Accessing memory to a non-constant pointer

Figure 4-15.  Constant memory-pointer declaration

Chapter 4 Writing Reusable Drivers

105

Adding the const keyword now makes it so that Port C is a constant pointer to

a volatile uint32_t, and any attempts to increment or decrement the pointer in the

source code will result in a compiler error. Using const in this way is critical to writing

robust code, and yet if you peruse example code or the register definitions provided by

microcontroller suppliers, you will find that the majority ignore this fact and allow their

memory-mapped pointers to be modified within the source.

�Mapping Memory with Structures
The next technique, and probably the most common technique provided by

microcontroller vendors, is to use structures to map into memory. Structures provide

developers with a way to create data members that directly map to a memory location.

The C standard guarantees that if I create data members in a structure, they will appear

in the same order without padding. The result is the ability to create structure pointers

that directly map into a peripheral’s memory space, as shown in Figure 4-16.

Figure 4-16.  Mapping a structure into 32-bit memory

Figure 4-17.  Declaring a peripheral base pointer based on structure

The structure needs to have each member match the order in order for the

peripheral registers to map properly. Also notice in the declaration that the structure is

abstracting the details for creating a pointer to the structure. With the structure declared

in this manner, a developer could access the peripheral by using the code in Figure 4-17.

Chapter 4 Writing Reusable Drivers

106

I’m not really a big fan of using macros in this way, although when searching through

microcontroller-supplied code you will find that it is quite rampant. An alternative would

be declaring PORTC_BASE_PTR as a standard identifier using the code shown in Figure 4-18.

Figure 4-18.  Defining and using the memory-mapped structure

Using structures to map memory can be efficient and provide developers with a

way to start creating reusable mapped drivers. Using standards such as ARM® Cortex®

Software Interface Standard (CMSIS) can provide a common and reusable method for

accessing peripheral registers that improves portability. Unfortunately, as of this writing,

many vendors will still use their own naming conventions, which still requires a fair

amount of work to adapt to different microcontrollers.

�Using Pointer Arrays in Driver Design
A unique method for mapping memory is to use a pointer array. A pointer array is an

array where each array element is a pointer. For an engineer developing a driver, every

element in the pointer array will point to a peripheral register for a single register type.

For example, a developer would create a pointer array to set the data output on the GPIO

ports by including a pointer to the data registers PORTA, PORTB, PORTC, and so forth.

A second pointer array would be created to hold all the GPIO direction registers for the

ports. A pointer array would be created for each register type on the peripheral, with

each entry representing a channel.

There are many benefits to using pointer arrays to map memory in an embedded

system. First, it allows a developer to group registers into logical channels. Second,

initialization functions can be written such that they loop through each index in the

array, which greatly simplifies the initialization function. Not only is the initialization

simplified, but using pointer arrays also creates a design pattern that can be easily reused

and ported from one application to the next and one platform to the next.

Chapter 4 Writing Reusable Drivers

107

Pointer arrays also help to abstract out the hardware and convert registers into

something more readable and understandable by human programmers. Developers can

create easy-to-understand function names that access the pointer arrays and handle the

details behind the scenes. Initialization structures can even be created that allow a table

to be passed into a driver to initialize the peripheral, once again creating a common,

standard framework that can be reused and easily ported.

Despite the powerful capabilities and portability that pointer arrays bring to the

programming table, there are a few drawbacks that developers need to be aware of. First,

creating pointer arrays will increase the program size when compared with structure

or direct-access memory-mapping methods. The reason for the program increase is

that there are now additional arrays that are storing pointers, and above that there is a

configuration table that will be stored in flash that contains the initialization information

for every peripheral and channel. The program size increase isn’t terribly significant, but

if a developer is limited to a microcontroller with a few thousand kilobytes of flash space

then it will quickly fill with initialization data.

Second, since the peripherals are being accessed through a pointer array, there

can be a performance hit a few clock cycles long when accessing low-level drivers.

If a developer is using an old 8-bit microcontroller running at 8 MHz, there could be

a big problem. Using a modern-day processor such as a 32-bit ARM Cortex-M, the

performance difference is not noticeable in most applications. That said, a developer still

needs to make sure that they monitor their system’s performance.

When comparing the cost and development times to using structures or direct

memory-mapping methods, pointer arrays provide developers with a flexible, reusable

design pattern that is easily scalable and adaptable. Let’s examine how we could map

memory to a timer peripheral using the pointer array mapping technique.

�Creating a Timer Driver Overview
Nearly every embedded system uses an onboard timer to keep time. A timer will often be

running at one or ten milliseconds and coordinating with a scheduler to run the system.

Every microcontroller will have slightly different capabilities as it pertains to the timer

peripheral, but there are some commonalities among all microcontrollers. In order to

determine the timer capabilities and build the infrastructure necessary to create a timer

Chapter 4 Writing Reusable Drivers

108

driver that can be reused and follows the pointer array memory-mapping methodology,

there are several steps a developer needs to follow:

•	 Step #1 – Define the configuration table

•	 Step #2 – Define the peripheral channels

•	 Step #3 – Populate the configuration table

•	 Step #4 – Create the pointer arrays

•	 Step #5 – Create the initialization function

•	 Step #6 – Populate the driver interface

•	 Step #7 – Maintain and port the design pattern

These concepts can easily be applied to any peripheral driver.

�Step #1: Define the Timer’s Configuration Table
Before diving deep into the pointer arrays and creating the timer driver itself, it is useful

to start by considering the configuration parameters that are needed to set up the timer

peripheral. The reason for this is that developers need to dig through the datasheet to

determine which registers exist for the timer and what the bits mean in those registers.

While developers are digging through those registers, it is the perfect time to create the

configuration table structure that will be used to initialize the peripheral.

For a timer module, one would expect to find registers related to the following:

•	 setting the mode

•	 enabling

•	 setting the clock source

•	 the clock pre-scaler

•	 and so on

The necessary information will be found by looking at each register in the

timer datasheet and listing them out in a structure. After the configuration list has

been created, a channel name member can be added that will be used to assign a

human-readable value. Developers will also want to add a timer-interval value. The

timer interval will tell the initialization function what the timer tick rate will be in

Chapter 4 Writing Reusable Drivers

109

microseconds. The initialization function can be written to take the configuration

parameters for the clock and automatically calculate the register values necessary for the

timer to behave properly so that the developer is saved the painful effort of calculating

the register values.

A good practice is to place the structure definition within a header file, such as

timer_config.h. An example timer configuration structure can be found in Figure 4-19.

Keep in mind that once this structure is created the first time, it will only require minor

modification to be used with another microcontroller.

Figure 4-19.  Example timer configuration structure

�Step #2: Define the Timer’s Peripheral Channels
A peripheral channel is an independent hardware module for the peripheral, such as

Timer0, Timer1, and Timer2. Each timer is separate within the microcontroller but

usually has the same or similar capabilities as the others. A developer can consider

every register and configuration value associated with the Timer0 module to be the

Timer0 channel. There are a few reasons for why a developer wants to create a channel

definition within the software code base.

First, creating a channel definition allows a developer to create a human-readable

value that, when included with the configuration table, makes figuring out what the

configuration is associated with simpler. On a small microcontroller, this may not seem

like a big deal if there are only two timers, but in a modern, high-end microcontroller

there could be a dozen timers and looking at a complex configuration table can result

in confusion. Confusion results in bugs, and we want to minimize bugs as much as

possible.

Chapter 4 Writing Reusable Drivers

110

Second, the channel definition will be used by the drivers to access the correct

element in the pointer array. It is therefore critical to make sure that the channel naming

order matches the pointer array order. The channels are used in the driver interface and,

once again, make the code more human readable, as the timer is used throughout the

application.

The channel definition is nothing more than a simple enum. It lists all the available

peripheral channels that are available. For example, a microcontroller with three timers

would list out TIMER0, TIMER1, and TIMER2, as shown in Figure 4-20. In addition to listing

the channels, it is a good practice to create a final enum element named MAX_TIMER or

NUMBER_OF_TIMERS that can then be used as a boundary-condition checker.

Figure 4-20.  Timer channel definition

�Step #3: Populate the Timer’s Configuration Table
Once the pieces are in place to define the configuration table, developers can dive in and

create it. The configuration table should be located in the timer_config.c module. The

configuration table is going to be nothing more than an array where every element is of

type TimerConfig_t. Since a developer probably doesn’t want the initialization to be

changeable during operation, the configuration table should also be declared const. The

configuration table can also be declared static so that it has internal linkage. A helper

function can then be created that returns a pointer to the table. The pointer to the table

is what is then used in the application, and the configuration table itself stays hidden.

An example of the timer configuration table can be seen in Figure 4-21.

Chapter 4 Writing Reusable Drivers

111

Since the configuration has internal linkage, a developer will need to create a helper

function that returns a pointer to the configuration table. A simple helper function can

be seen in Figure 4-22.

Figure 4-21.  Example timer configuration table

Figure 4-22.  Configuration table helper function

Figure 4-23.  Generic pointer array mapping pattern

�Step #4: Create the Timer’s Pointer Arrays
Creating the pointer arrays that map into the peripheral memory space is straightforward

but can sometimes be confusing. The pointer arrays are going to be located within the

driver module for the peripheral. For a timer, these would be the timer.h and timer.c

modules. These modules would contain all the timer driver functions along with the

timer driver interface.

An array will be created for every common register that exists among the timer

peripherals. Each array will have a general form, which can be seen in Figure 4-23,

and will be followed for nearly every memory mapping. The REG_SIZE can simply be

replaced with the fixed-width integer definition for the target processor. For example, if

the target is an 8-bit microcontroller, REG_SIZE would be replaced with, or defined as,

uint8_t. A 32-bit processor would have REG_SIZE defined as a uint32_t.

Chapter 4 Writing Reusable Drivers

112

The ARRAY_NAME is simply replaced with a description for what the register type

is that the array is mapping to. CHANNELS can be omitted in the array definition, but

if a developer is trying to be as explicit as possible, which is always a great idea, then

specifying the number of elements in the array would be necessary.

It is important to also note that the placement of const and volatile is critical. Placing

them in a different location will completely change what is constant and whether the data or

the pointer will be reread at each program encounter. Const is telling the compiler that the

pointer in the array cannot be changed to point to anything else, keeping our pointers from

changing. On most compilers, this will also force the array to be stored in flash. Volatile

is telling the compiler that the data in the register may change unexpectedly, so reread

the data. A developer may want to go even further by limiting the pointer-array linkage to

internal by declaring the array static, which is a very good programming practice.

Using the generic definition shown in Figure 4-23, a developer will then need to

use the definition pattern to create and populate an array with a pointer to the register

for each peripheral channel. The register definitions are usually already created by

the microcontroller manufacturer and are sometimes already in a pointer form. In

most cases, just the addresses for the registers are defined, and the developer must

typecast the address into a pointer when initializing the array. An example for the timer

peripheral that shows a few pointer-array definitions can be seen in Figure 4-24.

Figure 4-24.  Example timer peripheral pointer-array initialization

�Step #5: Create the Initialization Function
All the previous steps have been setting up the scaffolding that is required to map into the

peripheral memory space and configure the driver. Now, it is time to write the function that

will initialize the peripheral. The greatest advantage to using pointer arrays is that creating

an initialization function is simple and reusable! The pointer arrays allow a developer to

create a design pattern that can be reused from one application to the next with only minor

modifications required to support new microcontrollers. Updating the design pattern for a

new microcontroller takes just a fraction of the time that it would take to start from scratch.

Chapter 4 Writing Reusable Drivers

113

The first step to creating the initialization function is to create a function stub for

Timer_Init that takes a pointer to TimerConfig_t. Don’t forget that TimerConfig_t is a

structure that contains all the initialization information for the different timer channels.

Developers should declare the pointer as const so that the initialization code can’t

accidentally manipulate the pointer. The configuration code is probably stored in flash

anyway, so it can’t easily be changed without active assistance from the flash controller,

but it’s a safe programming practice to declare the pointer const anyway.

Before a single line of code is written, it is wise to take a few minutes to develop an

architectural diagram and a flowchart depicting how the initialization function is going

to behave. A simple activity diagram for initializing the timers through the configuration

table and pointer arrays can be found in Figure 4-25. Literally all that is done is that

the code loops through the configuration table, one entry at a time, and reads the

configuration setting for the peripheral. The setting is then mapped into the correct

register and bits before moving on to the next parameter.

Enable Clock

Index <
Channels? Return from Init()

Reset Timer

Clear Count

Calculate Period

Set Prescalers

Configure Interrupts

Y

N

Figure 4-25.  Timer initialization flowchart

Chapter 4 Writing Reusable Drivers

114

The result is a simple initialization that just loops through the configuration table

and then writes to the pointer array. A shortened initialization function example can be

seen in Figure 4-26. Notice that every pointer-array access requires us to dereference the

pointer in the array element. Don’t forget that the full source is available with the book

materials.

The initialization can be written to simplify the application developers’ software as

much as possible. For example, a timer module could have the desired baud rate passed

into the initialization, and the driver could calculate the necessary register values based

on the input configuration clock settings. The configuration table then becomes a very

high-level register abstraction that allows a developer not familiar with the hardware to

easily make changes to the timer without having to pull out the datasheet.

Figure 4-26.  Driver high-level loop initialization example

Chapter 4 Writing Reusable Drivers

115

Figure 4-27.  Timer init loop code

Chapter 4 Writing Reusable Drivers

116

�Step #6: Fill in the Timer Driver Interface
After completing and testing the initialization function, the driver will require additional

interfaces to control the timer. A developer may want to add interfaces to enable and

disable the timer, change the counter interval, and so on. Prior to ever getting to the

implementation phase, these interface features should have been identified, and with a

timer initialized they can now be filled in and tested.

The details for how to design the interface will be covered in greater detail later in the

book. For now, consider the following as example timer-driver functions:

•	 Timer_Init

•	 Timer_Control (Enable/Disable)

•	 Timer_IntervalSet

•	 Timer_ModeSet

�Step #7: Maintain and Port the Design Pattern
Once the timer driver has been fully implemented, it is possible to use it as a design

pattern. Nearly every microcontroller will have peripherals on board that have similar

behaviors and functions. For example, every time module needs to have an enable, a

clock source, pre-scaler, counter, and so on. The peripherals may exist in a completely

different memory region and have different names, but that is why the pointer arrays

come in so handy. Simply update the pointer arrays with the correct register pointers

and modify the bits that are manipulated, and the driver is now ported to a new

microcontroller.

Implementing a driver using pointer arrays can decrease the time required to

implement and test future drivers. There is a simple procedure that a developer can

follow to update the design pattern for any microcontroller.

•	 Step #1 – Update the configuration table definitions.

•	 Step #2 – Update the configuration table declarations.

•	 Step #3 – Update the pointer arrays.

•	 Step #4 – Update the initialization and driver functions.

•	 Step #5 – Perform regression testing.

Chapter 4 Writing Reusable Drivers

117

�Selecting the Right Driver Implementation
So far in this chapter, we’ve examined a few different methods that can be used to map a

driver into the peripheral memory space. These have ranged from direct register access

to the more complex pointer array mapping methods. Selecting the right method for the

job can be difficult, especially if a team wants reuse but has a very resource-constrained

system.

In order to make an informed decision, developers need to consider a few different

factors, including:

•	 Code size

•	 Execution speed

•	 Efficiency

•	 Portability

•	 Configurability

Table 4-1 compares the different memory-mapping methods and where they are

best deployed. Keep in mind that the table is doing a direct comparison, and while

one method may be mentioned as being least efficient, a developer should take into

consideration what that really means. It could be that there are a few extra instructions

generated to access the register by indexing an array and dereferencing a pointer.

In most applications, the additional instructions won’t really affect the application

performance, but performing a few experiments can be useful to wrap your mind around

the best and worst cases.

Table 4-1.  Memory Map Comparison

Mapping Technique Code Size Execution Speed Efficiency Portability Configurability

Direct Register Access Smallest Fastest Most Efficient Least Least

Pointer Structure Average Average Average Average Average

Pointer Arrays Largest Slowest Least Efficient Most Most

In general, the direct register access technique is best used for very resource-

constrained systems with less than 16 kB of code space. These systems typically are 8-bit

and have clock speeds less than 48 MHz. Pointer-structure mapping is a good general

Chapter 4 Writing Reusable Drivers

118

technique that is often used by default by microcontroller manufacturers. Pointer arrays

really require microcontrollers with at least 32 kB of code space. The main reason is that

the configuration tables and the pointer arrays can take up code space, which is not

available in resource-constrained devices.

�Going Further
Let’s examine what you can do to take the concepts we’ve discussed in this chapter and

start to apply them to your embedded software.

•	 Select a code module in one of your applications. Identify all the

areas where variables and functions are implicitly declared extern.

Which ones can be changed to static?

•	 Examine the hardware register mapping file for your microcontroller.

What keywords are present? const? volatile?

•	 Examine the hardware register mapping file for your microcontroller.

What memory mapping method is it using?

•	 Examine the datasheet and hardware register files for your

microcontroller. Write three different timer drivers using each of the

following methods:

•	 Directly accessing registers

•	 Using structures

•	 Using pointer arrays

Answer the following questions about the drivers:

•	 Which driver was the fastest to implement?

•	 Which has the smallest code size? The largest?

•	 Which is more human readable?

Chapter 4 Writing Reusable Drivers

119

•	 Port each driver to a different microcontroller using the drivers just

written as the starting point. Answer the following questions about

the drivers:

•	 Which driver was the fastest to implement?

•	 Which has the smallest code size? The largest?

•	 Which is more human readable?

•	 Which driver was the easiest and quickest to port?

Chapter 4 Writing Reusable Drivers

121
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_5

CHAPTER 5

Documenting Firmware
with Doxygen

“Just because you don’t like something doesn’t mean that it isn’t
helping you.”

—Tim Harford

�The Importance of Good Documentation
Writing and maintaining documentation is highly important, yet it is often a neglected

element of embedded-software development. Engineers typically start a project strong,

keeping documentation synchronized with written code. As the project progresses,

schedule and cost pressures intensify due to antsy clients and perhaps even the boss

breathing down the developers’ necks. The result is that the developers bury their heads

in the code and just crank it out as fast as possible. Developers start to take shortcuts to

save time, such as skipping documentation, telling themselves that once the software is

written they’ll go back and update the documentation. In reality, the code either goes

undocumented or is sprinkled here and there with half-thoughts and gibberish in a

rushed attempt to provide illumination into what has become chaotic.

Documentation is a tedious and unrewarding part of the embedded-software engineer’s

job. No one wants to do it, yet if it isn’t written, maintaining and updating the code can

become a nightmare for fellow developers or even for forgetful versions of our future selves.

There are many benefits to having well-documented embedded software, such as:

•	 Having a reference to look up API and HAL calls (a software manual)

•	 Having a document that communicates implementation details and intent

122

•	 Decreased time to train engineers (just review the documentation!)

•	 A clear and concise description of the standards used to develop the

software, such as coding or industry standards (improved readability)

•	 Improved maintenance and overall costs resulting from having

access to a reference rather than having to “wing it” and decode large

amounts of code

•	 Faster speed to make updates and changes to the software

Well-documented embedded software will decrease the time and costs required to

develop and maintain it, and it can even have the added benefit of decreasing the overall

stress of a project.

CASE STUDY—A PROJECT WITH NO DOCUMENTATION

Documentation can mean the difference between getting to market quickly or never getting

to market at all. I had a client who was working on a medical device that was inherited from

another engineering company. I was called in to review the code that was available and try to

make heads or tails of what features were completed and where the code stood.

The code existed as a single main.c file of over 100,000 lines of code, with no comments,

cryptic variable names, and no documentation. After months of analysis, we finally scrapped

the entire code base and started from scratch. More than six months of previously developed

effort was lost because the original engineers never bothered to document their work (let

alone follow any recommended coding practice).

�Easing the Documentation Load
The problem with the way many developers create documentation is that they are

expected to create multiple documentation sources. They create requirements

documents, design documents, interface-control documents, and API references and then

still must comment the source, among other documentation needs. The development of

documentation that is correct and useful is time consuming. Time consuming means it’s

expensive too! Most companies are in a hurry to get to market and don’t want to pay the

documentation price. Yet, good documentation saves time and money in the long run,

over the product’s total lifetime. So, what can developers do to balance these needs?

Chapter 5 Documenting Firmware with Doxygen

123

There are two approaches that developers must follow in order to generate

documentation that is useful and doesn’t require unrealistic amounts of time. First,

developers need to automatically generate their documentation. There are many tools

available at freemium or even premium costs that can generate documentation based

on the organization of the code and the comments associated with it. One such tool,

Doxygen, will be examined in great detail in this chapter.

Second, developers need to generate all their documentation from a single source.

While there is a need for requirements, design, and reference manuals, these all need to

be maintained in a single source that can be used to generate the individual documents.

Otherwise, if separate sources are used, developers will need to change multiple

sources every time something changes in the software or in their requirements. Using

a single source allows the generation tool to scan for changes and make updates to all

documentation at once.

Even if developers use an automated tool to generate documentation, there is no

guarantee of success without discipline. Developers must be diligent in making sure

that the single source is updated as project and code changes are made. There are two

factors that determine the level of quality one can expect from software documentation:

whether the team is disciplined and whether they use an automated tool. Figure 5-1

demonstrates a way that we can think about documentation.

Disciplined

Not Disciplined

AutomatedManual

Sparse Functional /
Accurate

Minimal /
inaccurate

Non-existent

Figure 5-1.  Software documentation spectrum

Chapter 5 Documenting Firmware with Doxygen

124

In the lower left quadrant, we have a team that is not disciplined and generates

documentation manually, which will result in no documentation at all. These are teams

that either are set up for failure or will require far more time and money to get their

product to market and maintain it. Teams in this quadrant are not capable of creating

portable and reusable firmware, but are instead functional rapid prototypers who can

make something work on a bench but struggle to get anything production ready.

The lower right-hand quadrant, where we have a team that is not disciplined but

has an automated tool available, we create minimal documentation that tends to be

inaccurate. In this circumstance, automated tools are able to parse the general structure

and flow of the code and identify variables. Something is better than nothing, but the

documentation tends to be inaccurate due to developers’ not updating code comments

or adding any comments at all. Developers will still struggle to maintain these systems

and may be frustrated by incorrect information.

The upper left-hand quadrant, where we have a disciplined team manually

generating documentation, will result in accurate documentation, but it will generally

be incomplete and sparse. The reason for this is that such teams need to invest

large amounts of time, money, and effort to generate their documentation, which

very few development teams have. The result is that we end up with great high-level

documentation, but the details tend to be lacking. Many government organizations tend

to fall into this category, although they happily invest the time and money.

The final quadrant, the upper right, is where developers interested in developing

high-quality, reliable, portable, and reusable code should aim to find themselves. These

teams are disciplined, updating code comments and design diagrams as they change.

They use automated tools to scan their code base and comments to generate their

documentation. They focus on the end result and generate functional and accurate

documentation.

�An Introduction to Doxygen
Discipline cannot be taught from the pages of a book, but how to set up and leverage

automated documentation tools can be. Software tools such as JavaDocs, NaturalDocs,

and Doxygen are example tools that generate documentation from the code and

comments. In this book, we will focus on Doxygen, a tool that is open source and widely

adopted within the software industry.

Chapter 5 Documenting Firmware with Doxygen

125

“Doxygen is a documentation system for C++, C, Java, Objective-C, Python, IDL

(Corba and Microsoft flavors), Fortran, VHDL, PHP, C#, and to some extent D.”1

Doxygen offers several advantages to the software developer who is looking to keep

their documentation consistent and up to date with what the source code is actually

doing. Besides its free price, which is hard to beat, Doxygen allows developers to use the

comments within the header, source, and other text files to generate documentation in

common formats, such as HTML, RTF, or PDF. Doxygen allows the developer to show

how a project was implemented by browsing files, classes, modules, variables, and other

types that are used in the program in addition to generating graphs to show how they

interact with each other. Doxygen can be considered a way to automatically generate

a software manual for the project. Developers can even go so far as to document their

tools, standards, and nearly any other piece of project documentation that might need to

be generated.

CASE STUDY—SELECTING A DOCUMENTATION TOOL

A few years before I became a consultant, I was working within the defense industry for a

small business that had been quite successful but had poor software processes. Despite their

success, they had nearly no documentation for any of their software and had a fairly high

turnover rate. One of my primary missions was to help them get their software-development

process under control and develop documentation.

I developed a few criteria for selecting a documentation tool, such as:

•	 Accepted as an industry standard

•	 Low cost

•	 Updated multiple times per year

•	 Supports multiple programming languages

•	 Outputs HTML, RTF, and LaTeX file formats

•	 Supports multiple comment styles

•	 Strong user base and ecosystem

1�Doxygen, August 2015, www.doxygen.org.

Chapter 5 Documenting Firmware with Doxygen

http://www.doxygen.org/

126

Doxygen fit these criteria, while another tool favored by a more senior engineer did not. At the

time, management decided to go with the more senior engineer’s recommendation, and all of

the software was commented using a proprietary format. The tool was buggy and hadn’t had

any updates in over two years. Within a year, the tool was officially abandoned and obsolete.

An expensive and time-consuming effort began to convert the comments to Doxygen.

Doxygen allows just about any kind of data to be added to the documentation,

including images and equations. All the source code is available and hosted on GitHub,

which allows a team to dig through the guts of the tool and modify it as needed. More

important, Doxygen is widely used and supported through various software disciplines,

and for more than ten years has been providing feature improvements and updates at

least three times a year. There is no fear of the tool suddenly disappearing or losing its

place as the standard documentation tool.

�Installing Doxygen
Doxygen is a fairly simple but very configurable and powerful documentation generation

tool. As developers, we can take advantage of tools such as Doxygen to generate reusable

code modules that are already documented. We can use Doxygen to create templates

of software for APIs or HALs that have the interface already predefined and are simply

waiting for the code for the specific target to be added in order to bring it to life. Since

Doxygen can be so useful for creating reusable code and interfaces, I believe it is critical

to walk through the installation process and cover some of its more interesting features.

You will discover that many of the HAL examples in this book were designed first by

writing Doxygen comments in header and source files. The implementation of those

interfaces was then filled in as needed for target applications.

The first and most important step when installing Doxygen is to locate its

installation file, documentation, and any dependencies. All of the Doxygen installation

and documentation can be found at www.doxygen.org. The installation files can be

acquired from the download link located on the top left-hand side of the Doxygen

website. Doxygen can be downloaded in pure source form from a GitHub repository, or

individual binaries can be downloaded for one’s platform of choice. While many readers

may cringe, I mostly use Doxygen on Windows, but there is support for Mac OS and

Linux, among others. Since I typically use Windows for my development environment,

there are several additional packages required to generate PDF documents and fancy

Chapter 5 Documenting Firmware with Doxygen

http://www.doxygen.org/

127

graphics for call graphs and the like. Before we get into those juicy details, download and

install Doxygen for your operating system of choice.

Next, download and install Graphviz from http://www.graphviz.org/. Graphviz

is an open source graph visualization resource provided by AT&T research. Later, we

will use this package by enabling the HAVE_DOT function in our configuration file to

allow Graphviz to generate our graphs. This results in a more visually appealing and

professional result. Finally, in order to convert documentation into a PDF, install LaTex

(for a Windows user, I highly recommend the use of MikTex) and Ghost Script. Together,

these two packages will allow for PDF generation.

�Documentation Project Setup
There are so many ways to set up a directory structure for a project. Earlier, I discussed

how I like to organize a project based on the layer of firmware, such as drivers,

middleware, and application. Since each of these layers could be moved from one

application to the next, I find that it makes more sense to add a documents folder to each

of the different layers of firmware. Depending on how you organize your software, it may

even make sense to have a documents folder for each of the components in a project so

that the documentation can follow that component. In any case, a documentation folder

will need to have the following:

•	 An images folder to store any visual aids that will be included in the

documentation

•	 An output directory for HTML-, PDF-, and RTF-generated

documentation

•	 A configuration folder to hold the Doxygen configuration file

•	 A folder for additional documents, such as requirements, design,

main pages, datasheets, schematics, etc.

I am a big fan of only inventing the wheel once, so as soon as a directory structure

that works for you is determined, copy that folder structure (even any file starters) and

save it somewhere safe for the start of each project.

Chapter 5 Documenting Firmware with Doxygen

http://www.graphviz.org/

128

One of the advantages of using Windows is that the old humdrum of command

prompts and command options are a thing of the past (fine, I admit I still use the

command prompt for things like ipconfig or Python scripts, but I can pretend like the

old terminal days are over). Doxygen for Windows comes with a user interface called

DoxyWizard that can be used to set up a Doxygen configuration file. The configuration

file should be stored in the config folder of the documentation folder that was just

discussed.

DoxyWizard is broken up into a tabbed user interface where each tab acts as a

stepping stone for setting up the project, as can be seen in Figure 5-2. First, we have a

Wizard tab that is extremely useful for configuring the initial project settings, such as

project name, logo, source location, and where to store the documentation. Next, with

the basics entered, the Expert tab allows the fine-tuning of Doxygen for parameters such

as file extensions, messages, HTML, and many other options. Finally, the Run tab is

where a developer can execute Doxygen based on the configuration-file parameters and

build the documentation.

Figure 5-2.  DoxyWizard project setup

Chapter 5 Documenting Firmware with Doxygen

129

Using the Doxygen Wizard tab is straightforward. Under Project, enter the project

name, a brief description, and the version or ID for the software. If the project has a

logo, the logo file can be selected, and the logo will appear on the top of each HTML

documentation page in the HTML header. I usually just place my company logo, since

each individual project does not have its own logo associated with it. The primary

directory for source code and the destination for the documentation can also be entered.

An example of the Setup page can be found in Figure 5-2.

The Mode menu provides a developer with the ability to select the programming

language that is being used. An estimated 80 percent of all embedded software is

developed in C, which makes the selection of optimizing for C a good guess. Obviously,

if a developer is using C++ then the option for C++ optimization should be selected.

Figure 5-3 shows an example of how the Mode page should look when properly

configured. Note that Doxygen in this case is set to only generate documentation for

documented entities. Documented entities are areas of code that have special comment

blocks associated with them. For a code base without any comments, a developer could

select “All Entities,” and Doxygen would still parse the code and generate at least some

documentation.

Figure 5-3.  DoxyWizard Mode setup

Chapter 5 Documenting Firmware with Doxygen

130

The Output option provides a developer with the ability to select the types of

generated documentation that should be created. Figure 5-4 reveals that the options are

HTML, LaTeX, Man pages, RTF, and XML. But what about PDF? I’ve found that the best

way to generate a PDF is to either use the LaTeX output or, better yet, to open the RTF

and save it as a PDF. Sometimes it can be useful to add additional information to one of

the generated files prior to creating the PDF and releasing it. The RTF also has the option

of using a template so that the generated document fits a required format. Creating an

RTF template is beyond the scope of this book, but be aware that templates exist if it is an

area of interest.

Figure 5-4.  DoxyWizard Output setup

No documentation is complete without some sort of diagram, and Doxygen has the

ability to generate a plethora of diagrams automatically for developers. The diagrams do

require GraphViz and the dot tool, so at any point, if graphs in the documentation show

up empty, odds are that Doxygen needs to be repointed to the GraphViz directory.

Developers can select which graphs to include within the documentation. Figure 5-5

shows the Diagrams option, which includes all of the possibilities. A few examples include

class diagrams, call graphs, and dependency graphs. These are good options to include

within automated documentation.

Chapter 5 Documenting Firmware with Doxygen

131

At this point, Doxygen has enough configuration information to generate the

documentation. The documentation is generated by simply moving to the Run tab

and pressing the Run Doxygen button. Doxygen will chew on the configuration file

for a little while and begin processing the source. When “*** Doxygen has finished” is

displayed in the status window, pushing the Show HTML Output button will open the

HTML document that was just generated. Any documentation that is generated from

the source would be created from the functions and variables within the code and not

from developer-generated comments. Let’s examine how developers can document and

customize their software for Doxygen.

�Doxygen Comment Fundamentals
When it parses the source files, Doxygen looks for a specific set of characters that

indicates the comment is written for Doxygen. The language selected will determine

which character set is used, but for developers programming in C, we can use our

standard comment blocks of /* Comment */ with a slight twist. Doxygen comments start

by adding a second * character to the comment block. For example, Figure 5-6 shows

how a macro or variable would be commented for Doxygen.

Figure 5-5.  DoxyWizard Diagrams setup

Chapter 5 Documenting Firmware with Doxygen

132

When Doxygen parses the source file, it would discover the /** comment block and

then associate the entire comment with the macro GRAVITY_ACC_MS. All Doxygen blocks

start with /**, but not every C construct is commented in exactly the same way. Let’s

examine some of the common declarations and how a comment block can be formatted

appropriately.

�Documenting enum and struct
Documenting an enumeration, typedef, or structure is not much more complicated

than a basic macro or variable, but it does have a few caveats. First, a developer must

add the basic comment block above their code to provide a description for the code,

such as what it is for and how to use it. Next, a developer can add a comment for every

member of an enumeration or structure. Documenting the member is done by placing

a comment block to the right of the member and adding the < character after the /** so

that the comment becomes /**<.

The < character is used to tell Doxygen that the comment is associated with the

member that was declared to the left of the comment block. If you really want, you can

explicitly specify the difference between an enumeration and structure by placing an

enum or struct command in front of the definition, but Doxygen does such a great job

of knowing what it is documenting that it is unnecessary and not recommended. An

example code snippet for documenting a structure can be found here:

/**

* Defines two variables which specify the spacecraft structure.

*/

typedef struct

{

 uint8 Acceleration; /**<Rate spacecraft is accelerating */

 uint8 Mass; /**< The current mass of the spacecraft */

}SpaceCraft_t;

Figure 5-6.  Basic Doxygen comment

Chapter 5 Documenting Firmware with Doxygen

133

The most complicated code blocks to document are functions because they tend to

require more information in order to be completely explicit on their purpose and how

to use them. They have input and return parameters in addition to references to other

functions, and even sometimes example code snippets. That is why it is extremely useful

to create a function template that can be copied, pasted, and modified for each new

function that is developed. Just be warned: copying and pasting a template can result in

the documentation not being up to date if a developer forgets to update the pasted code.

�Documenting Functions
When documenting a function, there are several important factors that a developer

needs to ensure are documented to get maximum benefit. The factors include the

following:

•	 Function name

•	 Function description; that is, what it does

•	 A list of pre-conditions that should be completed before calling the

function

•	 A list of post-conditions that a developer can expect to occur if the

pre-conditions have been met before calling the function

•	 Descriptions of the function’s parameter list and whether the

parameter is used to input and/or output data

•	 A description of the function return data, if there is any

•	 An example code snippet on how to properly use the function

•	 A list of related functions that would be relevant for a developer to be

aware of

•	 A change history documenting all the changes that have been made

to the function with the date, version number, developer who made

the changes, and a description of the change that has been made

The preceding list might at first seem overwhelming. There is a lot of information

that needs to be included. But consider what would happen if any of this information

were omitted. Take, for example, omitting whether the parameters are inputs or outputs

to the function. A developer looking at the function will need to take extra time to

Chapter 5 Documenting Firmware with Doxygen

134

determine what the parameters are doing, and might even need to experiment to get it

right. Or worse, they could just implement what they think is right and hope for the best.

Hello, new bug! Such a simple piece of documentation will make it very clear what the

parameters are doing. Remember, sometimes the code isn’t readily available

(in binary format), which means the documentation and the function prototype are the

only information a developer has to go on.

A developer looking to properly document their function will need to create a

function comment block that contains all this information. The first step is to provide

the function name in the comment block. Documenting all the features in the preceding

list will take up quite a few lines of code, and since the comment block should be above

the function definition, we want to make sure that we can easily find the function name,

which will follow dozens of lines later. The comment block will start with the text shown

in Listing 5-1.

Listing 5-1.  Function Start Block

/**

* Function : Dio_Init()

*//**

In the preceding case, we don’t want the function name to be included multiple

times in a row within the generated documentation, so we leave the function name

outside the Doxygen comment block. The comment block doesn’t start until the /**

sequence. Doxygen will automatically associate this comment block with the function

that immediately follows it and associate the comment block with the function name.

Including the function name in the Doxygen block would duplicate the function name in

the documentation, which would make the resulting documentation confusing.

The next step is to provide a brief description of the function’s purpose. Since the

Doxygen comment block has already been started, we can simply start entering the text

that we want for the description. An example for the description block can be seen in

Listing 5-2. In this case, we want to create a heading within the comment block with

the text “Description” in bold face. We can do this by placing \b before the text. The

remainder of the comment should simply state the purpose of the function.

Chapter 5 Documenting Firmware with Doxygen

135

Listing 5-2.  Function Description Block

* \b Description:

*

* This function is used to initialize the Dio based on the

* configuration table defined in dio_cfg module.

Next, a developer should take the time to carefully think through any of the function

pre-conditions that need to be documented. For example, before making a call to a

peripheral transmit function, an application should have already called the peripheral

initialization function and configured the peripheral clocks. Documenting the

pre-conditions is essentially a checklist for developers on what they need to make sure

happens before ever using the function. An example of a pre-condition/post-condition

block can be seen in Listing 5-3.

Listing 5-3.  Pre-condition/Post-condition Comment Block

* PRE-CONDITION: Configuration table populated (sizeof > 0)

* PRE-CONDITION: NUMBER_OF_CHANNELS_PER_PORT > 0

* PRE-CONDITION: NUMBER_OF_PORTS > 0

* PRE-CONDITION: The MCU clocks configured and enabled.

* POST-CONDITION: The DIO peripheral is initialized.

The function parameter list and return data should be the next information listed

inside the comment block. In order to document parameters in Doxygen, a developer

should use the specialized Doxygen tag @param. Doxygen has several specialized tags

that provide the tool with information on how to process the comment block. Refer to

the latest documentation for a complete tag list. For parameters, @param can be used by

itself, but it is recommended that developers follow the tag with square brackets [], then

specify the parameter direction, such as an input [in], output [out], or both [in/out].

An example can be seen in Listing 5-4. The return parameter for the function is specified

by using the @return tag followed by the type of data being returned and a description.

Listing 5-4.  Function Parameter and Return Block

* @param [in] Config is a pointer to the configuration table

* for the peripheral.

*

* @return void

Chapter 5 Documenting Firmware with Doxygen

136

Developers should include at least a short example of how the function can be used.

There is a mechanism within Doxygen that allows a developer to insert code snippets

into the documentation. In order to show code within the documentation, two special

tags are required, the @code and @endcode tags. As one might guess, the @code tag is used

to tell Doxygen that the following comment block contains code, while @endcode tells

Doxygen that the code block is complete. The code example can be inserted in between

the tags. Doxygen will parse the code and generate a special documentation block that

shows the code. An example of how to use the tags can be seen in Listing 5-5.

Listing 5-5.  Function Example Code Block

* \b Example:

* @code

* const DioConfig_t *DioConfig = Dio_ConfigGet();

*

* Dio_Init(DioConfig);

* @endcode

The next critical puzzle piece is to tell Doxgyen what other functions are related to

this function so that links to those functions can be generated in the documentation.

The code-block format is to use the @see tag followed by the name of the function. If

the function exists within the documentation, Doxygen will create a hyperlink in the

HTML documentation that allows a developer to easily navigate to related functions to

understand how they work. Listing 5-6 shows how to use the @see tag.

Listing 5-6.  Functions Related Block

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

Finally, our function block could contain a change history for the function. A change

history isn’t necessarily required, but in safety-critical systems developers may want

to note at the function level the changes that were made and when they were made.

Change information could be kept in a general log or at the beginning of a module, but it

is up to the developer to decide how they want to track changes.

Chapter 5 Documenting Firmware with Doxygen

137

The change-history block is going to look a bit crazy at first because there is HTML

formatting included so that the change list looks presentable in the final documentation.

Without the HTML tags, the generated documentation would not align or look nice,

which would undoubtedly drive management crazy. A developer can insert HTML tags

into the documentation, such as
 for a line break and to start bold-faced text

and to end bold-faced text. In the generated documentation, a change history

looks most presentable when using a table that has an 800-pixel width. An example

change-history block can be seen in Figure 5-7.

Figure 5-7.  Function Revision Log

Each documentation block that we have discussed can be pulled together into a

single block that results in a nice, legible, and reusable function template that can be

used to quickly generate adequate function documentation with minimal effort and

time input. A template that is fully assembled and ready to be used can be found at

www.beningo.com.

�Documenting Modules
Application code is going to contain a series of header and source modules that contain

code comments. To generate the most consistent documentation possible, there are two

additional pieces of information that developers need to add to their modules to ensure

full documentation. The first is a module header. The header is something that nearly

every developer already adds to their code, except in this case they are replacing general

text with specialized Doxygen tags. Typical information that is included in a module

header is the following:

•	 Module name

•	 Filename

•	 File description

•	 Module author

Chapter 5 Documenting Firmware with Doxygen

http://www.beningo.com/
http://www.beningo.com/

138

•	 Original file date

•	 Module version

•	 Compiler used

•	 Target

•	 Any specialized notes

•	 Copyright

•	 Licensing information

Listing 5-7 demonstrates what a typical module header would look like. Notice that

the information that we would normally put in the module header simply gets an @

symbol added before it so that Doxygen can place the information in the documentation.

A module header of this type would go into both header files (*.h) and source files (*.c).

Listing 5-7.  Example Module Header2

/**

* @Title : Digital Input / Output (DIO)

* @Filename : dio.c

* @Author : Jacob W. Beningo

* @Origin Date : 09/01/2015

* @Version : 1.0.0

* @Compiler : TBD

* @Target : TBD

* @Notes : None

*

* THIS SOFTWARE IS PROVIDED BY BENINGO EMBEDDED GROUP

* "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,

* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BENINGO

* EMBEDDED GROUP OR ITS CONTRIBUTORS BE LIABLE FOR ANY

* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

2�Legal wording is modified from Freescale source example code and provided as an example.

Chapter 5 Documenting Firmware with Doxygen

139

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF

* THE POSSIBILITY OF SUCH DAMAGE.

**/

At this point, a developer might think that is all they need to know about Doxygen

to start, but there is still one more interesting feature that can be used to organize

the resulting documentation. Doxygen contains an @addtogroup tag that allows the

documentation to be organized by group. For example, a developer may be developing a

hardware abstraction layer and wants all the modules contained within it to be shown in

the documentation together under the group HAL. In this case, the developer would add

the @addtogroup tag near the beginning of the module along with a curly bracket { (I like

to call them squirrelly brackets). At the bottom of the module, a developer would then

add one final closing squirrelly bracket. Don’t forget that the squirrelly brackets must be

within a comment block, otherwise the compiler will try to process them. An example of

adding the contents of dio.c into a HAL group can be seen in Listing 5-8.

Listing 5-8.  @Addtogroup Comment Block

/** @addtogroup MCU_Drivers

 * @{

 */

Code goes here

/** @}*/

�Creating a Reusable Template
For the most part, no developer is going to be able to remember from memory all the

details thast are required to fully document a module and its contents. Remember,

consistency and readability are important characteristics for software that will be

Chapter 5 Documenting Firmware with Doxygen

140

ported and reused, so there must be some way to decrease the labor intensity required

to document source code. The easiest way to document code is to create a header and

source file template that contains generic starter information and formatting so that

every time a new module is created, the template is used and contains all the Doxygen

formatting and tags. The template will provide a consistent look for every module within

the code base.

Figuring out all the little nuances Doxygen requires can take some time and some

trial and error. I’ve been using Doxygen for almost a decade (if not longer), and I still

periodically make adjustments and tweaks to my template. A developer could start from

scratch with a blank header and source module, or they could download the templates

that accompany this book and modify those templates for their own use. The resources

at the end of this chapter identify where the templates can be downloaded.

Once the template has been downloaded, a developer should review each

documentation section. First, review how each tag is used and the way each C language

construct is documented. If the documentation does not make sense, navigate to the

Doxygen website and review the user-manual entries on that tag. Run Doxygen and

review what the generated HTML documentation looks like. At this point, a developer

can start to make modifications to the template and then rapidly observe how the

changes affect the final output.

�Generating a Main Page
The fact that an application can be documented in such a way that a software manual

is automatically generated is very powerful. After experimenting with Doxygen’s output

capabilities, a developer might eventually notice that the main HTML page is rather

plain. In fact, the main page is completely blank and devoid of any useful information.

As unfortunate as this may be, it is a wonderful opportunity for developers to create their

own main page.

The main page should contain information about the project and code base that

would be useful for anyone who is trying to get up to speed or who is developing

application code. In fact, a main page would be very useful if it contained a table of

Chapter 5 Documenting Firmware with Doxygen

141

contents with a series of web links that could be used to navigate to pages with important

developer information. Examples for main page information include the following:

•	 Project introduction (what is this whole thing about?)

•	 Version log (which version is this and how have things changed from

version to version?)

•	 Acronyms (what do all these funny terms mean? i.e., ADT, A2D, SPI,

CAN, PWM, etc.)

•	 Software architecture overview

•	 APIs (Do we have any APIs that need to be explained?)

•	 HALs

•	 Middleware

•	 OS information

•	 Coding standards (what are our code conventions? How do we name

things, etc.?)

•	 Documentation (how we documented things)

•	 Project requirements (a quick overview of what we had to do)

•	 Testing and validation (how did we prove that this version actually

works?)

•	 Tools (tools that we used to develop the project, such as compiler,

IDE, lint, svn, etc.)

Anything that a developer needs to know should be included as part of the main

page. Creating the main page starts out relatively simple. There are two primary methods

that can be used to populate the main page. First, a single file can be used in which the

entire table of contents is added. For small projects, a single file can make a lot of sense

since there probably isn’t a lot of information that needs to be recorded. However, as

projects grow, a single main page file can become rather large and difficult to maintain.

A better approach would be to create a file for every element of the table of contents

and then have Doxygen merge them into a main page. For now, we will only examine

the first method, and the reader can at their own leisure investigate the more advanced

technique.

Chapter 5 Documenting Firmware with Doxygen

142

Doxygen recognizes a file to be the main page by identifying the @mainpage tag at the

top of the file. After the @mainpage tag has been added to the file, a developer needs to use

HTML tags to create the layout and the information flow for their page. Being an expert at

HTML is not required. There are a few HTML commands that a developer will find useful,

which can be found in Figure 5-8. The easiest way to create links for the table is to use

the HTML anchor tag. When a link is clicked that has an associated anchor, the page will

jump to the anchor point, allowing the main page documentation to be easily navigated.

Figure 5-8.  HTML commands

Each entry in the table of contents section of the main page can be considered its

own separate section. Doxygen has a built-in section command that can be used to

separate the content. Doxygen even provides a subsection command for the event that

we need to break up our information into even smaller pieces. Sections will allow a

developer to organize their main page and properly control the flow of information.

As with any document, a picture is worth a thousand words, and Doxygen even has a tag

to include them. The image tag consists of the command image, a type such as html, rtf, or

latex, and then the filename, such as image.jpg. Due to the way Doxygen handles images, a

developer does need to include multiple image tags if more than one type of documentation

is going to be created. For example, if a developer wants to create HTML, RTF, and LaTex

files, an image tag needs to be added that includes the command for all three formats.

�Ten Tips for Commenting C Code3

During the hustle and bustle of the development cycle, it isn’t uncommon for

commenting the code to fall to the bottom of the priority list. With the pressure to

get the product out the door, discipline usually fails, and short cuts result in a poorly

3�“10 Tips for Documenting C Code,” originally published on EDN.com: http://www.edn.com/
electronics-blogs/embedded-basics/4422388/10-Tricks-for-Documenting-Embedded-Software

Chapter 5 Documenting Firmware with Doxygen

http://www.edn.com/electronics-blogs/embedded-basics/4422388/10-Tricks-for-Documenting-Embedded-Software
http://www.edn.com/electronics-blogs/embedded-basics/4422388/10-Tricks-for-Documenting-Embedded-Software

143

commented code base. Source code that is well documented can decrease the cost and

time to market by providing insights into the software that would otherwise require

time and experimentation to jog the developers’ memory on the what and why of the

code’s behavior. These insights, if lost, can increase costs and delay time to market by

introducing bugs into the code base. Here are ten simple tips that can be followed to help

ensure that not only does the software get documented but also that it is documented

with useful information.

�Tip #1: Explain the Why, Not the How
There seems to be a human tendency when developing software to want to explain

what a line of code is doing rather than why the code is there in the first place. A favorite

example is bit shifting a literal by x bits. The code and the comment generally look

something like this:

// Shift bit by 8 and store in PortB

*Gpio_PortB |= (1UL<<8);

The comment itself leaves quite a bit to be desired. Anyone with a basic

understanding of the C language knows by observation what the line of code is doing,

but why are we shifting by 8? Why are we storing the shifted bit pattern in PortB?

A developer who reads this line of code six months or a year after writing it will have

little idea without investigation as to what this line is really doing. Something more

appropriate might look something like the following:

// Port B bit 8 controls the motor relay that needs to be turned off

// during the emergency stop procedure. Setting bit 8 high will

// disengage the motor through a relay.

*Gpio_PortB |= (1UL<<8);

This comment may not be perfect, but it explains why the developer is shifting a

bitwise ORing into PortB.

�Tip #2: Comment Before Coding
The general wisdom of commenting code has always suggested that comments be

written when the code is. This insight makes a lot of sense, because while the software

is being written the why of it is fresh in the mind of the developer. The developer could

Chapter 5 Documenting Firmware with Doxygen

144

wait until after the software is written, but the pressure of getting to market and other

priorities often make it highly unlikely that the comments will convey the original intent.

An alternative to writing comments during or after the code is to instead write the

comments before the software is written. This has the unique advantage of allowing the

developer to think through what they are about to code and the why before ever writing

a single line of code. It can be thought of as a translation of the software architecture and

design phase of development into source code. This keeps the software design at the

forefront of the developers’ minds and allows them to think clearly about what it is they

are about to write code for.

�Tip #3: Use Doxygen Tags
There are many different free tools available on the web that can translate code

comments into useful document formats. A tool that can scan the source and generate

HTML, RTF, and/or PDF files should be a developer’s dream. Why? Many development

teams are forced to maintain not only their source code but also a wide variety of design

documents that describe what the code is doing. These documents often trail what is

happening in the program. Using a tool such as Doxygen can automatically translate the

code comments into a document that fits the bill of these design documents! The result

is that the developer now only has a single source and documentation chain to maintain,

which should decrease the amount of time they need to spend creating “pretty”

documents. (Also, hopefully this also ensures that the documentation and source code

stay in synchronization with each other).

Doxygen has become widely accepted to the point that compiler and silicon vendors

include Doxygen tags in their automatically generated code. They are building Doxygen

into the tool chains in order to make it easier for developers to generate documentation.

As developers, shouldn’t we accept this free tool that makes documentation so much

easier?

�Tip #4: Adopt a Code Style Guide
A coding style guide contains all the information a developer would need to properly

create identifiers and also how the software should be documented. A style guide helps

the developer or a team of developers develop software in a uniform manner. A style

guide aids the developer by removing distractions from the software that may exist due

Chapter 5 Documenting Firmware with Doxygen

145

to stylistic differences, the result being that code reviews are easier because the code

style is uniform and the actual code can be the focus rather than superficial details about

comment locations.

�Tip #5: Use a File Header
Using a version-control system is a highly recommended practice, but it can become

tedious to always refer to the revision-control system regarding the changes that occur

in a code base. It can sometimes be confusing or unclear what a module’s purpose is.

Using these reasons as a basis, it is recommended that header and source files contain a

comment header describing the function and purpose of the module. There are several

pieces of information that could be included in the header, but at a minimum it should

include the following:

•	 File name

•	 Author

•	 Origin date

•	 Module version number

•	 Compiler version used to compile the code

•	 The intended target

•	 Copyright information

•	 Miscellaneous notes

•	 Revision information

�Tip #6: Create a Commenting Template
One of the best methods for ensuring that code comments are consistent and that they

adhere to the Doxygen syntax is to create a commenting template. There would be a

need for two templates—one for header files and then another for source files. The

coding templates would contain all the standard commenting blocks required to adhere

to the coding style.

A commenting template would include a file header along with comment tags and

commenting blocks for structures, enumerations, typedefs, and functions. An example

Chapter 5 Documenting Firmware with Doxygen

146

header and source file template that can be used to develop embedded software and that

uses Doxygen tags can be found at http://www.beningo.com/162-code-templates/.

�Tip #7: Have a Consistent Comment Location
One of the most effective ways to decrease bugs and the costs associated with a software

project is to perform code reviews. A developer and his peers usually perform the

code review, but the process can become more difficult if the commenting structure is

inconsistent. Placing comments that use different formats and putting them in different

places can be distracting and detract from the code review, decreasing its effectiveness.

The use of a coding style guideline is recommended, as in the previous tip, because

it would dictate not only the commenting formats that should be used but also where

comments should appear. This will help keep the commenting structure uniform and

allow code reviewers to focus on the code and its behavior rather than be distracted by

the location or information contained within the comments.

�Tip #8: Don’t Comment Every Line
In all truth, developers really don’t want to comment their software. It is time consuming

and not enjoyable. It is much more fun to twiddle bits, control hardware, and pretty

much do anything else (other than sit in a meeting, of course). Yet, what is often

considered well-documented code has a comment for every single line of code.

The whole purpose of commenting code is to provide the future version of the

developer or maintainer with insight as to the what and why of the software. A verbose

essay is not required or wanted. Creating a block of comments that describe what the

block is doing is usually completely adequate. One great advantage of commenting the

block is that if the code needs to change but the block description still applies it can save

development time that would otherwise be spent updating comments.

�Tip #9: Start Mathematical Type Identifiers with the Type
When developing software that is performing a mathematical operation, it can be

extremely useful to start the identifier with the type. For example, creating a variable

named ui8_Velocity or si32Acceleration provides a developer with an instant

understanding of the type.

Chapter 5 Documenting Firmware with Doxygen

http://www.beningo.com/162-code-templates/

147

Starting an identifier in this way has many advantages. First, there is no need to

reference the variable declaration to get the type. This can save time otherwise spent

continually having to refresh on the type and size of the variable and whether it needs

to be cast in the calculation. Second, it makes it easier to spot casting errors, such as

multiplying two 8-bit numbers without a cast.

Starting an identifier with the type is a trend that seems to come and go over time.

Personally, the author has bounced back and forth on this naming convention, but it

seems to prove very useful for identifiers used in mathematical calculations and can

make mathematical errors much more obvious.

�Tip #10: Update Comments with Code Updates
Using a template in conjunction with Doxygen can be a very powerful tool if utilized

properly. Part of what is considered proper use of such templates and tools comes during

software updates and maintenance. These tools are only effective if the developer is

disciplined enough to update their comments as their software changes.

During the development process, requirements, design, and implementations

change. As part of these changes, the developer needs to make sure that the comments

are always up to date with the software that is implemented. Even if it doesn’t feel like

there is enough time to implement the code changes and update the comments, the

developer should still take the time to do so. One reason is that over the lifetime of the

product the cost will be greatly influenced by the developer’s maintaining discipline

despite the time pressures that may have been placed on them.

�A Few Final Thoughts on Documentation
Commenting software is often delegated to being one of the lowest-priority tasks in the

development cycle. The pressure to quickly implement and deploy embedded software

leaves the engineer scrambling to design, implement, and deploy their firmware. The

reality is that commenting code and providing clarity on the why can make future

maintenance efforts and even the original development effort cost less, and under the

right circumstances it can even decrease the time to market.

These tips are just a few simple examples of what can be done to improve the

embedded-software design cycle through easing the demands that are placed on the

developer by using templates, standards, automated tools, and taking the time to explain

the why of the software.

Chapter 5 Documenting Firmware with Doxygen

148

�Going Further
Reading about automatic documentation generation is one thing, but actually doing

it is a completely different story. The following are some suggestions on next steps to

improve the way your software is documented:

•	 Review the software documentation spectrum located in Figure 5-1.

Where do you/your team currently lie within the figure?

•	 Identify three improvements that can be started over the next three

months that can take your documentation effort from its current

place on the spectrum toward where you want to be.

•	 Add a calendar reminder to review the progress being made in

improving the documentation process monthly.

•	 Read “10 Tricks for Documenting Embedded Software” on Jacob’s

blog at EDN.com.

•	 Download and install Doxygen.

•	 Download Jacob’s Doxygen templates from www.beningo.com.

•	 Review each template and become familiar with the different tags used.

•	 Select a module from an existing source project and convert it to use

the Doxygen template. Generate the documentation and examine the

resulting output.

•	 Update the template and main page for your own purposes and needs.

•	 Separate the main page file into separate files for each of the

table of contents items. Separating the files will make them more

maintainable and modular.

•	 Add the formatting and style of the Doxygen comment blocks to your

own C style guide.

•	 Generate output documentation for HTML, PDF, RTF, and LaTeX. Get

familiar with potential issues and workarounds that may be required

to get the look and feel needed for each documentation set.

•	 Experiment with the advanced tabs within the DoxyWizard and learn

what each feature does and how it affects the generated output.

Chapter 5 Documenting Firmware with Doxygen

http://www.beningo.com/

149
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_6

CHAPTER 6

The Hardware Abstraction
Layer Design Process

“Design is the fundamental soul of a man-made creation that ends up
expressing itself in successive outer layers of the product or service.”

—Steve Jobs

�Why Use a HAL?
Using a HAL is a great way to develop software that can be easily reused and ported from

one application and platform to the next. Why would a developer want to do such a

thing? For starters, reinventing the wheel over and over again gets pretty boring. I believe

most developers want to be working on cutting-edge development work instead of being

stuck in a never-ending Groundhog Day1 loop. Even for developers who prefer to do the

same thing over and over and over again, development timelines are short, budgets are

tight, and there is just way too much work that needs to be done on any given project.

The goal is therefore to write code that can be reused, and in order to do that, developers

need to create a hardware abstraction layer (HAL) to allow their middleware and

application code to access the microcontroller hardware generically.

Creating a rock-solid HAL does not happen overnight. The HAL creation process is

an iterative one and very well might take years. The good news is that developers can

create a HAL very quickly and then with each project adjust and modify it until nearly

every conceivable permutation has been encountered. We are going to walk through

1�Groundhog Day, the 1993 comedy starring Bill Murray. If you don’t understand this reference
then stop now, go on Netflix, Hulu, etc., and watch the movie. An all-time classic.

150

the HAL creation process, but before we do, let’s take a look at the characteristics that

every HAL needs to have. Keep in mind that this book examines a HAL that jumpstarts

a developer’s HAL needs. Rather than taking years to tweak, the readers of this book will

be able develop a HAL very quickly based on the processes and accompanying materials.

�A Good HAL’s Characteristics
So far in this book, we’ve discussed several characteristics that portable and reusable

software should exhibit. A well-designed and thought-out HAL will exhibit these

properties, but there are a few characteristics that should be highlighted at this point.

We are about to design a hardware abstraction layer—not the code that runs behind

the interface, but the actual interface itself. A good HAL will contain the following

characteristics:

•	 Human readable

•	 Abstracted complexities

•	 Well documented

•	 Portable

•	 Generic control capability

•	 Extensible, specific control capability

•	 Encapsulates data

•	 Reusable

•	 Maintainable

The hardware abstraction layer should contain a basic set of functions to control

the underlying peripherals that are human readable and generic. The interface should

be simple and contain fewer than a dozen functions. The more complex the interface

becomes, the more difficult the interface will be to understand, port, and just simply use.

Developers should only expose the need-to-know information of the interface and allow

all the details to be hidden behind the interface. Developers who use the HAL don’t need

to be an expert in the underlying hardware and complexities, just an expert in how to use

the interface!

Chapter 6 The Hardware Abstraction Layer Design Process

151

CASE STUDY—WHEN GOOD INTENTIONS BACKFIRE

A well-designed and -executed HAL should simplify application development along with many

other value-added benefits, such as faster development and decreased costs. However, when

the HAL interface is designed, developers need to make sure that they provide verbose error

codes and documentation that specifies what causes those errors. On numerous occasions,

I’ve encountered vendor code that has all the dressings and appearance of being great only

to discover later that when an issue occurred behind the interface, it was nearly impossible to

troubleshoot and figure out what was wrong. When this happens, debugging the black box can

be challenging and time consuming. Test and validate any vendor code before committing to it!

�The HAL Design Process
Designing a hardware abstraction layer is a relatively straightforward process that is

repeated for each microcontroller peripheral, potentially multiple times for different

architectures. The general process contains seven steps:

	 1)	 Review the microcontroller peripheral datasheet.

	 2)	 Identify peripheral features.

	 3)	 Design and create the interface.

	 4)	 Create stubs and documentation templates.

	 5)	 Implement for target processor(s).

	 6)	 Test.

	 7)	 Repeat for each peripheral.

The process, while apparently simple, can require a few executions before becoming

completely clear. In this chapter, we will walk through this generic process for designing

a hardware abstraction layer, and then in subsequent chapters we will walk through the

process again for specific peripherals and external components.

Chapter 6 The Hardware Abstraction Layer Design Process

152

�Step #1: Review the Microcontroller Peripheral
Datasheet
In order to create a HAL that can be used from one application to the next, a developer

must understand the microcontroller peripheral’s capabilities. The only way to do this

is to review the microcontroller datasheet for the peripheral. In fact, the best way to

do this is to review datasheets from multiple microcontroller vendors and perform a

comparison. Start by identifying microcontroller architectures that are pertinent to your

particular applications. For example, select a couple of 16-bit microcontrollers from

two or more suppliers and then a couple of 32-bit microcontrollers from two or more

suppliers.

The first review of the datasheets should be high level. Review the descriptions and

jot down notes on basic features, but don’t dig into the details at this point. Collecting

the datasheets and understanding the general use and purpose of each peripheral is

more important at this stage.

�Step #2: Identify Peripheral Features
Once the general behavior and use of a peripheral are understood, a developer needs

to determine which features are common and which are uncommon to a particular

microcontroller. Creating a feature matrix is a great way to identify these capabilities.

Table 6-1 is an example of a feature matrix. The microcontrollers to compare are listed

along the top, with the identified features in the rows of the first column. Start by creating

the matrix and leaving the feature list blank. A developer will discover these as they read

through the datasheets in detail. As features are added to the list, place a checkmark in

each column if the microcontroller peripheral supports the feature.

Table 6-1.  Peripheral Feature Comparison List

Peripheral Features MCU #1 MCU #2 MCU #3 MCU #4 MCU #5

Feature #1 x x x x x

Feature #2 x x x x x

Feature #3 x x x

…

Chapter 6 The Hardware Abstraction Layer Design Process

153

One of the best areas of the datasheet to review is the register map. The registers

reveal what configuration settings are available for the peripheral. Reading the

peripheral’s general description can be helpful, but the details are in the registers.

For example, a developer creating a HAL for a GPIO device would find the ability to

multiplex the pins, set pins as inputs or outputs, and control the output of the pins. The

general description may not mention these since they appear obvious to a seasoned

developer. Reviewing the register map makes these capabilities obvious.

Once the feature matrix is completed, a developer should review the matrix and

identify the features that are common to every microcontroller and which are attempts

to differentiate the microcontroller. The common features, such as setting the pin

multiplexer for a GPIO pin, will be added to the HAL interface, while non-common

features such as input validation will be included through a generic interface. The

common features will be the features that every single microcontroller vendor peripheral

has, and those are the features to design the interface around.

�Step #3: Design and Create the Interface
By this point, a developer has identified all the common and uncommon features that

are associated with a particular peripheral. The developer can now create the interface.

There are three key areas that a developer must take into account when designing their

interface:

•	 A common interface

•	 An uncommon interface

•	 Callback registration

The common interface is designed to handle common peripheral features. For

example, the common interface usually consists of initialization and writing and reading

from the peripheral at a minimum. We will look at detailed examples in the coming

chapters, but for now, Figure 6-1 provides a generic idea of what a developer would

expect the common interface to look like.

Chapter 6 The Hardware Abstraction Layer Design Process

154

The uncommon interfaces into the peripheral have the potential to clutter up the

interface and make it unwieldy. In order to handle any custom features built into the

peripheral, a very simple interface can be created that allows an application developer to

have full control and access to the peripheral to set up and configure those features. By

keeping the HAL interface generic, the application code can extend the HAL to include

those custom features. As far as the HAL is concerned, the interface is nothing more than

presenting a method for reading and writing hardware registers.

Take a moment to look at the generic definition listed in Figure 6-2. Notice that even

though these two interfaces are designed for uncommon peripheral features, we’ve

managed to create a generic and reusable interface. That is a huge plus. The downside

is that if a developer wants to use these customized features they need to dig into the

datasheet, learn how the extended features work and how to set them up, and then

extend the interface into their application code. In most circumstances though, the

common interfaces are what will be used, so the downside to this technique is actually

quite minimal.

Figure 6-1.  Common-feature HAL interface example

Figure 6-2.  Uncommon feature HAL interface

The final piece to the HAL design puzzle is the callback registration interface. Every

single peripheral has interrupts, and if we are designing a clean, reusable interface, the

callback interface will provide developers with a clean way of customizing the interrupt

needs without having to continually rewrite the driver when it is used in different

applications. Interrupt service handlers can be written at the application level and then

registered as callbacks with the specified interrupt through the callback interface.

Chapter 6 The Hardware Abstraction Layer Design Process

155

In my experience, many developers overlook the need to have callbacks as part of

their interface. Instead, every application has a slightly different version of the driver that

is dependent upon the application. The ability to port this code drastically decreases

and often causes confusion and issues when trying to update the drivers. The interface

example is fairly simple and can be seen in Figure 6-3.

Figure 6-3.  Callback HAL interface

Developers may be wondering, why is there only a register function and no way to

unregister a callback? The best practice for using interrupt callbacks would be to assign

callbacks during the system initialization. Once registered, there shouldn’t be any need

to unregister or change the behavior of the system. If for some reason there is, simply

register a new function with the driver. The new registration will override the old. If the

developer wants nothing to be associated with the callback, simply register a default or

exception handler.

�Step #4: Create Stubs and Documentation
Templates
At this point in the HAL design process, developers understand what features need to be

included in the interface. There are two key activities that must be performed now. First,

a developer must create an outline for the interface that acts as a prototype or empty

implementation from which all uses of the HAL will derive. Generally, these empty

interfaces are known as stubs or sometimes are referred to as scaffolding. Second, since

the stubs will serve as the interface, adding documentation to the stubs can be critical to

minimizing future porting and implementation efforts.

Many developers at this point will start to develop the stubs for their peripheral.

I think that is a grave mistake. We understand what features go into the interface, but there

currently isn’t a guide as to what the stubs should look like or what they are supposed to

do. Therefore, I highly recommend that developers start by documenting the work that

Chapter 6 The Hardware Abstraction Layer Design Process

156

they are about to perform. There is a simple process that developers can follow to create

their documentation, which can be found here:

	 1)	 Copy the Doxygen header and source templates developed

in Chapter 5.

	 2)	 Rename the copied template to the peripheral interface being

designed; for example, gpio, pwm, etc.

	 3)	 Update the file header information.

	 4)	 Fill in the interface documentation by creating a function

documentation block for each of the features listed back

in Step #3.

	 5)	 Repeat the preceding steps until all the features for the peripheral

have been documented.

Once the documentation has been developed, filling in the stubs is trivial. The

documentation literally serves as our design document, and we simply read the

documentation and then implement what we read. For example, take a look at the

function block found in Listing 6-1, which shows the initial documentation for the

Pwm_Init interface. Notice that the developer has now had time to think through the

interface and identify pre-conditions and post-conditions along with the data that needs

to be passed into and out of the function. At this stage, a developer can fill in the stub.

Listing 6-1.  Documentation for pwm Initialization Interface

/**

* Function : Pwm_Init()

*//**

* \b Description:

*

* This function is used to initialize the pwm based on the configuration

table defined in pwm_cfg module.

*

* PRE-CONDITION: Configuration table needs to populated (sizeof > 0)

* PRE-CONDITION: The MCU clocks must be configured and enabled.

*

Chapter 6 The Hardware Abstraction Layer Design Process

157

* POST-CONDITION: The Pwm peripheral is set up with the configuration

settings.

*

* @param[in] Config is a pointer to the configuration table that

contains the initialization for the peripheral.

*

* @return void

**/

Filling in the stub is super easy. The function documentation is already completed,

and all the developer needs to do is read the text and convert it into code. The developer

can read through the documentation and simply execute these next steps:

	 1)	 Read the feature name; create a function with the same name.

	 2)	 Populate the parameter list based on the @param tags in the

documentation.

	 3)	 Select appropriate types for the parameters if they have not been

specified in the documentation (some interface data types may

change based on the target architecture).

	 4)	 Populate the return data type.

	 5)	 For developers using C, populate the braces {} to create the

function.

	 6)	 Copy the function implementation and add it to the header file for

the prototype declaration.

	 7)	 Review the documentation and populate examples and the

@see tags.

Before moving on to the implementation phase, developers should make sure that

they save the completed template in their revision-control system. Developers will

find that as they implement the HAL on multiple architectures and use it on different

projects, the HAL may change slightly with time. This is perfectly normal but needs to

be documented. A strict control process should be followed so that applications using

different HAL versions don’t run into long-term maintenance issues.

Chapter 6 The Hardware Abstraction Layer Design Process

158

�Step #5: Implement for Target Processor(s)
With the stubs and templates in place, the development team is now ready to begin

implementing their HAL; that is, filling in the implementation details for a particular

architecture and target microcontroller. Developers must take care at this stage that

they follow proper programming techniques, use version control, perform static code

analysis, and so forth.

In order to get the most out of a first pass at the HAL, developers should implement

the HAL on more than a single target. Back in Step #2, the developer sifted through the

datasheets for several microcontrollers in the attempt to find common and uncommon

peripheral features. Ordering development kits for these same microcontrollers and

implementing the HAL on all three simultaneously is a great way to flesh out issues and

ensure that the HAL is on the right track.

“Wait a minute,” you might say. “Implementing the HAL on three targets, perhaps

only one of which will be used immediately, is wasted time and effort.” Not so!

Remember the reusable driver patterns that were discussed in Chapter 4? Once a pattern

is implemented in code, the developer simply needs to modify the pointer arrays and

make a few minor updates to the initialization. The first development kit implementation

will take a while, but the remaining two or three can all be implemented and tested in

less than a couple of days. Remember, the HAL will become a major building block for

developers in all future development projects. Spending a little bit more time up front to

get it right will save money and time maintaining and updating code bases.

�Step #6: Test, Test, Test
A great advantage to having a well-defined hardware abstraction layer is that when

porting or implementing on multiple processors it becomes possible to develop test

cases that can be used for regression testing. Most of the developers that I encounter are

horrible at testing. Don’t get me wrong, they spot check a few things here and there, but

they really have no idea if the entire code base has actually been tested or not. They just

cross their fingers and ship their code, which can be downright scary sometimes. When

developing a HAL that will literally form the system’s foundation, testing is not optional.

Chapter 6 The Hardware Abstraction Layer Design Process

159

When testing a HAL, there are a few tips and tricks that developers should keep in

mind to minimize the stress and pain. These include the following:

•	 Create a testing interface.

•	 Develop a formal set of test cases.

•	 Use regression testing.

•	 Automate the testing.

A single peripheral could potentially have thousands of possible initialization states.

Verifying every single possible configuration value would be time consuming and nearly

impossible if a developer were to not automate testing. Developing automated testing for

a HAL takes some time, but the peace of mind and the quality of the software that comes

from it is well worth it. In order to perform automated tests, a developer will need to do

the following:

•	 Create a test interface into each of the peripherals.

•	 Develop an external testing application.

•	 Set up a test communication protocol to drive testing.

•	 Use an external application that runs the peripheral through its

possible initializations and behaviors.

Figure 6-4 shows an example setup for testing a HAL. A developer could use a code

test harness, but to really test an embedded system the tests should be run on live

hardware. Figure 6-4 shows the use of an external test bench that stimulates the HAL and

peripheral to perform its different functions. Developers can make testing as simple or as

complicated as is needed. A very robust check of the implementation would transmit the

different possible configuration tables to the HAL and then verify that all registers are set

up as expected.

Chapter 6 The Hardware Abstraction Layer Design Process

160

Testing can be a very time-consuming process, especially in the early stages of the

HAL design. Keep in mind that once the tests and the interface are created, they are

designed once and used forever. The investment in most cases is well worth it, especially

when one considers the typical cost to resolve a software bug.

�Step #7: Repeat for the Next Peripheral
Once a developer has successfully walked through these steps for a single peripheral,

they are ready to repeat them and develop a HAL for every peripheral and device that

will be used in their projects. Some development teams find it useful to dedicate an

engineer or two for creating HALs for every possible device up front. Others simply

create new HALs as the project requires. There is no right or wrong way to go about

doing this.

In my own development efforts, I typically design a new HAL as the need arises.

Once designed though, I can reuse the HAL from one project to the next with little to no

effort. Application code becomes easily reusable because the interface doesn’t change!

I use configuration tables to initialize the peripherals, and once the common features are

identified, the initialization structure doesn’t change. A typical peripheral driver using

the HAL interface takes less than a day to implement in most circumstances.

So, if this is your first time reaching Step #7, congratulations! I look forward to seeing

you here again shortly. As you repeat the process over and over again, you may discover

that you feel like Bill Murray’s character in Groundhog Day. Don’t worry! Eventually

you will move on to bigger and better things and have a well-developed, robust HAL on

which to build all your cool application code.

Test PC

Programmer

Target MCU
Bus Monitor /

Communications

Logic Analyzer
I/O Monitor

Figure 6-4.  HAL test setup

Chapter 6 The Hardware Abstraction Layer Design Process

161

�10 Tips for Designing a HAL2

Now that we have examined the seven major steps required to develop a HAL, let’s

discuss ten tips that are critical to this process. These tips may not all be new to the

reader since we have already discussed a few in this book. Repetition is sometimes the

key to the success so we will review them again.

�Tip #1: Identify Core Features
A HAL needs to be a consistent and standard set of functions that can be used across

multiple hardware platforms. Microcontrollers come with a standard set of peripherals,

all of which serve a particular purpose in an embedded system. When developing a

HAL, examine each of the standard microcontroller peripherals and identify their core

features. A few core features that would be needed for a communication device, for

example, would be initialization, transmit, and receive functions. These are basic must-

have functions that would be needed in nearly any application. An example of a core

HAL for a UART can be found in Figure 6-5.

�Tip #2: Avoid an All-Encompassing HAL
Engineers sometimes fall into the “one ring to rule them all” trap. The trap is that

engineers start with something simple and elegant and then grow the solution to cover

the universe. HAL designers should avoid trying to create an all-encompassing or

singular HAL to rule every microcontroller device and peripheral. The reason to avoid an

all-encompassing HAL is that complexity, cost, and the potential for bugs will drastically

increase if you try to create one. Every microcontroller has niche features, so it would just

be impossible to create a standard and elegant HAL for them all.

2�Originally published on June 2, 2015 @ EDN.com: http://www.edn.com/electronics-blogs/
embedded-basics/4439613/10-Tips-for-designing-a-HAL

Figure 6-5.  Example core UART features

Chapter 6 The Hardware Abstraction Layer Design Process

http://www.edn.com/electronics-blogs/embedded-basics/4439613/10-Tips-for-designing-a-HAL
http://www.edn.com/electronics-blogs/embedded-basics/4439613/10-Tips-for-designing-a-HAL

162

�Tip #3: Add Register-Access Hooks
What can a developer do to handle niche peripheral features that aren’t handled by the

HAL? The answer is to build register-access functions into the HAL. A HAL can expose

the fact that it doesn’t cover every possible use and state of the peripheral and instead

provide write and read access to select registers within the driver. The register-access

functions would be considered “expert”-mode HAL functions that should be used

only by developers who are familiar with the inner workings of the microcontroller. An

example of how the register-access functions might look can be seen in Figure 6-6.

Figure 6-6.  Register-access HAL example

�Tip #4: Use Doxygen to Outline the HAL
A great way to plan and develop documentation for a HAL is to outline it using Doxygen.

There are several advantages to using Doxygen to plan the HAL. First, Doxygen uses

code comments to generate HTML, RTF, and PDF documents, which means the

developer already has source comments on what the different functions are supposed

to do. Second, since the comments for the HAL are automatically developed, the HAL

source files become a blank template in which developers can fill in the HAL functions

per the software architecture and requirements. Finally, any updates that are made to

the HAL over time can be made in one place, the source files, and then the updates easily

propagate to the documentation.

�Tip #5: Get a Second Set of Eyes
Getting a second set of eyes on the HAL is a wonderful way to get a fresh perspective. In

fact, one of the best things to do during any development cycle is to get multiple eyes on

the design. Every engineer has his or her own views and experiences that can contribute to

the HAL. Feedback from multiple parties, especially those that may have to use the HAL, is

a great way to minimize how many changes will need to be made to the HAL and helps to

ensure that the HAL will survive long term to maximize code reuse and minimize cost.

Chapter 6 The Hardware Abstraction Layer Design Process

http://www.stack.nl/~dimitri/doxygen/#new

163

�Tip #6: Don’t Be Afraid to Iterate
During the first release of a HAL, there are going to be minor problems and discoveries

that were overlooked during its design and review. Don’t sweat it! Designing a perfect

HAL is unrealistic, and the goal should be to develop one that is good enough to start

using. Gather feedback from the users of the HAL and then make minor iterative

updates. Make sure that the changes are well documented so that legacy HAL users can

easily update to the latest revision. After a few iterations, a developer will find that their

HAL has become a very well-oiled machine that saves precious development time.

CASE STUDY—ITERATING TO PERFECTION

No one gets a perfect HAL on the first try. The HAL that I use in my own development efforts

and with my clients is a HAL that I developed over the course of five to seven years. The first

iteration worked with a single microcontroller, a PIC24. After the first project, the HAL was

ported to a Freescale Kinetis-L component, which revealed numerous flaws and holes in the

HAL. The next port proved to require only minor cosmetic changes.

Every iteration afterward didn’t change the existing HAL at all but instead added additional

features, such as handling callbacks and the ability to extend the interface easily. The most

important aspect was that with each iteration, the documentation became clearer and

included more examples. Eventually, the HAL matured to the point where porting it to a

new microcontroller requires nearly no changes whatsoever! Start simple and use the time

available wisely, and before you know it you will have a robust and portable HAL.

�Tip #7: Keep the View at 30,000 Feet
Remember that one of the HAL's purposes is to provide a standard and consistent

interface that abstracts the hardware functionality. Keep the interface simple and

the level of detail about how the hardware works at the 30,000 feet view. A great test

is to have a manager or a software newbie review the HAL and ensure that they can

understand how it works.

Keeping the HAL at a high abstraction level will not only help to maximize its use but

it will also eliminate misunderstandings that can result from long debugging sessions,

increased costs, or missed deadlines. Also keep in mind that the HAL should allow

enough leeway so that a developer can implement the HAL functions in way that fits

Chapter 6 The Hardware Abstraction Layer Design Process

164

their requirements and application needs. The API or HAL should allow for different

low-level implementation strategies to be implemented and supported.

�Tip #8: Use Appropriate Naming Conventions
A safe bet when developing a HAL is to use an interface that is ANSI-C compliant. An

ANSI-C-compliant HAL will ensure portability across multiple compilers and tool

chains. An example of an ANSI-C-compliant requirement would be to limit the function

name length to 31 significant characters. Additional considerations would be to use

standard portable types and avoid compiler intrinsics. Another quick tip is to define a

short coding standard with naming and coding standard best practices on how the HAL

interface should be written.

�Tip #9: Include a Parameter for Initialization
One of the most common mistakes encountered when designing a HAL is to have a

peripheral initialization function take no parameters. In essence, the initialization is

hard coded for every application. A parameter-less initialization greatly limits the HAL’s

portability. An initialization function would be better served passing a pointer to a

configuration table. The simplest implementation would just have an empty void table.

A more complex implementation would use the pointer to loop through the table and

configure the peripheral. Either way, passing a pointer provides greater portability and

reuse to the HAL.

�Tip #10: Deploy on Multiple Development Kits
A simple and effective way to test out a HAL is to deploy it on multiple microcontrollers

from different silicon vendors. Developing simple test code will help to shake out the

HAL and elucidate any portability issues up front. Development kits are a great way to

cheaply get hardware to test HALs on. Most microcontroller development kits cost less

than $20.

Chapter 6 The Hardware Abstraction Layer Design Process

165

�Going Further
We’ve examined a fair amount of information on how to create a HAL from a generic

point of view. In the next chapters, we will walk through the process again for a number

of microcontroller peripherals. The following are ideas on how you can take the concepts

in this chapter a bit further:

•	 Download the Doxygen header and source modules from

https://www.beningo.com/162-code-templates/.

•	 Select three microcontroller development kits to test a HAL on.

•	 Walk through the process in this chapter and design a HAL for the

GPIO peripheral.

•	 Review any existing HALs and list updates and changes that need to

be made to them.

•	 Set up a revision-control repository in which to store your

microcontroller HALs.

•	 Identify two team members to participate in HAL design and

schedule regular weekly meetings for HAL reviews and development.

Chapter 6 The Hardware Abstraction Layer Design Process

https://www.beningo.com/162-code-templates/
https://www.beningo.com/162-code-templates/

167
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_7

CHAPTER 7

HAL Design for GPIO

“Insufficient facts always invite danger.”

—Spock, Star Trek, Season 1, Episode 25 (“Space Seed,” 1968)

�GPIO Peripherals Overview
The general-purpose input/output peripheral (GPIO), also commonly known as

the digital input/output peripheral (DIO), is the most commonly used peripheral

in all embedded systems. The obvious reason is that the GPIO peripheral is how a

microcontroller interacts with the external world around it. Whether the goal is to blink

a simple LED by changing the voltage on the pin or to perform a more complex task such

as multiplexing the pin to an internal peripheral to communicate with a device on the

SPI bus, a developer needs to understand the ins and outs of the GPIO peripheral.

In general, the GPIO peripheral is the gatekeeper for the microcontroller pins. Digital

information can be received and transmitted to the pins. Each pin is connected to a

multiplexer, which in some cases provides limits to the possible peripheral connections

to the pins. The GPIO peripheral will commonly tri-state during start-up until the

peripheral has been configured to set its pins to input or outputs. Some microcontrollers

may have a default input/output setting. The best recommendation if you want to

understand the full peripheral capabilities is to examine the datasheet in detail.

�Step #1: Review the GPIO Peripheral Datasheet
In order to develop a successful hardware abstraction layer that will withstand the

tests of time, a development team should review the microcontroller datasheet for

several different part families and manufacturers. By examining multiple datasheets,

168

the developer will quickly learn which features are common and which are meant to be

product differentiators.

Before jumping right into the datasheet and getting to work, a team should identify

at least three different microcontrollers that will be used for comparison. Since each

microcontroller vendor and architecture can vary drastically in capabilities, selecting

from the broadest parts range will help ensure that the largest possible combinations

are examined. For the examples in this book, we will examine the following

microcontrollers:

•	 NXP Kinetis-L KL25Z family (32-bit ARM Cortex-M0+)1

•	 STMicroelectronics STM32F4 family (32-bit ARM Cortex-M4)2

•	 Microchip PIC24F family (16-bit proprietary core)3

•	 Microchip PIC18F family (8-bit proprietary core)4

From reviewing the preceding list, the reader can see that we have a sampling of 8-,

16-, and 32-bit cores along with selections from different silicon vendors that contain

ARM cores. While we will not see every possible permutation for the peripherals, using

just these four microcontrollers will allow for a complete HAL to be developed.

During the initial datasheet review, developers should be attempting to get a general

feel for how the peripherals work and its general capabilities. Lower-level details such as

the register mappings will be examined in depth during the feature-identification step.

Most microcontroller datasheets are thousands of pages of technical details. In this step,

just finding the right datasheet and identifying the correct pages and sections in those

manuals will prepare developers for the real work that follows.

�Step #2: GPIO Peripheral Features
With a basic understanding of the peripheral’s function—in this case, mapping

the internal peripheral to the pins and controlling the input and outputs to the

microcontroller—a developer can dive into the details and identify specific peripheral

1�NXP KL25Z Sub-Family Reference Manual
2�ST Microelectronics STM32F427xx Datasheet
3�Microchip PIC24FJ128GA010 Family Datasheet
4�Microchip PIC18F2455 Datasheet

Chapter 7 HAL Design for GPIO

169

features. The easiest way to record the different features is to use an Excel spreadsheet.

By using a spreadsheet, a developer can list each microcontroller along the spreadsheet’s

top row, the features down the first column as they are discovered, and then also provide

a mark to indicate whether the microcontroller under review supports the feature.

Examining each microcontroller’s GPIO datasheet results in a table like Table 7-1.

Table 7-1.  GPIO Feature Comparison

Feature NXP KL25Z STM32F4 PIC24F PIC18F

Pin Output X X X X

Pin Input X X X X

Pin Toggle X X X X

Port Output X X X X

Port Input X X X X

Port Data Direction X X X X

Multiplexing X X X X

Pull-up/down Resistors X X

The table is very useful because at a quick glance developers can see what features

for the peripheral are common across any microcontroller and which ones are

specialized. They can also see where the differences are. Take, for example, the STM32F4

and the PIC18F. Both microcontrollers have internal pull-up resistors, while the other

microcontrollers don’t have this feature. These minor differences will potentially come

into play when the HAL is designed or could be critical when the configuration table for

the peripheral is developed. For GPIO, the differences seem minor, but as we will see

with other peripherals, the differences can become quite large.

�Step #3: Design and Create the GPIO HAL Interface
Defining the HAL interface is really the most exciting part of the entire process. As the

reader will discover, once the process is done a few times, a commonality will begin to

reveal itself and designing the interfaces will eventually become nearly second nature.

For now, the table that was created in Step #2 is going to prove very important to us.

Chapter 7 HAL Design for GPIO

170

Table 7-1 provides a developer with some functional details that the HAL is going to need

to exhibit in order to give the application developer enough control over the hardware.

After all, we want our HAL to abstract the low-level hardware and make it easier for the

application developer to interact with the microcontroller.

Every HAL interface is going to require, at a minimum, the following:

•	 Initialization

•	 Input/output

•	 Low-level register access

•	 Callbacks

The easiest place to start designing is the initialization. Every peripheral initialization

will follow a simple design. The initialization will start with a peripheral identifier, such

as Dio or Gpio, followed by an underscore (_), and then the function that the interface

will provide. When creating your first HAL, the initialization should return void until the

interface has become mature enough to return error codes. The choice is completely up

to the implementer though, if you want to leave the hooks in for errors from the start.

The initialization function should take a pointer to a configuration table that will

tell the initialization function how to initialize all the Gpio registers. The configuration

table in systems that are small could contain nearly no information at all, whereas

sophisticated systems could contain hundreds of entries. Just keep in mind, the

larger the table is, the larger the amount of flash space is that will be used for that

configuration. The benefit is that using a configuration table will ease firmware

maintenance and improve readability and reusability. On very resource-constrained

systems where a configuration table would use too much flash space, the initialization

can be hard coded behind the interface, and the interface can be left the same. An

example for the Dio_Init function can be seen here:

The next critical interface for the GPIO HAL is to determine the necessary inputs

and outputs required by the peripheral. For GPIO, the number of input and output

interfaces has the potential to get out of control very quickly. A developer could act on

individual pins, entire ports, adjust modes, and validate inputs, just to name a few. When

developing an interface, a developer should attempt to minimize it so that it doesn’t

become too large and unwieldy.

Chapter 7 HAL Design for GPIO

171

My personal preference is to operate on the GPIO interface at only the pin level.

I view every single pin as an individual channel for the peripheral interface and

design my HAL accordingly. For example, I include ChannelRead, ChannelWrite, and

ChannelToggle functions within my HAL. ChannelRead is used to read the input state for

a pin. ChannelWrite is used to write a desired state to an individual pin. ChannelToggle

will simply toggle the state for the desired pin. I keep each function separate, but if the

interface were to get too large, these three could be combined into a single function that

takes a parameter for the pin operation that will be performed on the peripheral.

The input/output interface might not just contain read and write functions.

There could be times when the pin mode or direction need to be changed during

program execution. During such a circumstance, a developer may decide that having

ChannelModeSet and ChannelDirectionSet functions as part of the interface would be

appropriate.

The next major functions that should be included in the HAL are generic register-

access functions. These functions are designed to handle “extra” peripheral features

that are NOT common in all microcontrollers. The RegisterWrite and RegisterRead

functions are meant to allow a developer to access the peripheral functions and then

extend the HAL into the board support package (BSP) or the application code. By

extending the HAL in this manner, a HAL can remain constant no matter what special

features a microcontroller feature may have.

BEST PRACTICE—INTERFACE SIZE

Keep any module interface to a dozen or fewer functions. The more functions there are, the

more difficult it can be for developers to remember and even find the function call they are

looking for.

Finally, a developer needs to consider functionality that may need to be set at the

application layer but that is hidden behind the veil of the HAL. An example might

be to have generic interrupt service routines that are defined in the driver but whose

functionality is determined during runtime or at compile time. Once a driver is

developed, we don’t want to have to change the code from one application to the next.

Instead, we prefer to use a callback function.

Chapter 7 HAL Design for GPIO

172

A callback function allows us to register a custom function during runtime that

will handle the behavior we are interested in without the need to change the code. It’s

completely possible that we would not use a callback function in an application but still

would want to include it as an option in the HAL. In many situations, the callback function

is used to register higher-level application code within the lower-level code. A perfect

example is using a callback to register interrupts within the driver code. The exact code

that is required for the interrupt service routine (ISR) may be unknown at the time the

drivers are designed and may change from one application to the next. Using a callback

keeps the driver code flexible so that it can adapt easily to the application code’s needs.

The resulting interface for the GPIO HAL would look something along the lines of

Figure 7-1.

Figure 7-1.  GPIO HAL interface

�Step #4: Create GPIO Stubs and Documentation
Templates
A well-designed HAL will be used from one project to the next and for multiple

microcontrollers. Once the interface has been designed, a developer can create a

generic header and source file that can be quickly adapted to any architecture. The

Chapter 7 HAL Design for GPIO

173

template must contain a few simple components, fully defined interface stubs, and

documentation.

The interface stubs are the declarations contained in a header file and the definitions

for the interface found in the source file. One recommendation for the template file

is to use the word TYPE where a developer would normally put the C language type.

The reason for doing this is that a team may be working with an 8-bit, 16-bit, or 32-

bit microcontroller whose registers will vary in size based on the architecture. When

the template is used to create real code, the template is copied and then each TYPE is

updated to the appropriate architecture bus width.

Each interface designed into the HAL should be documented. In an earlier chapter,

we examined how Doxygen can be used to document a header and source file along with

how to document functions and declarations. These skills will be essential to properly

documenting the HAL. In fact, the example templates that were developed earlier will be

directly applied to create the HAL template.

The template is designed to contain common interfaces and documentation but

can also contain common code! For example, earlier we examined how to create

configuration tables, and since the HAL is designed for common peripheral features, a

configuration template file can also be created that contains the default configuration

for any microcontroller. We can add any other code, such as the ability to read and write

GPIO pins, that will not change with the architecture. The ability to leverage code in this

manner can be very powerful and allows a developer to create drivers based on the HAL

template in a few hours rather than days or weeks.

During the template-development stage, a team should also examine each interface

and document all the pre-conditions and post-conditions that are expected for the

interface. For example, calling the Dio_Init function on an ARM-based microcontroller

before enabling the GPIO clock will result in a failed initialization. Somewhere within the

interface template the documentation needs to state that a pre-condition for executing

the Dio_Init HAL is that the GPIO peripheral clock has been enabled. A simple problem

could occur if the configuration table has not been fully populated. For that reason,

another pre-condition would be that the configuration table has a size greater than zero.

The idea of defining pre-conditions and post-conditions is not new to us, since we

have already discussed the concept for design-by-contract. In this case, a developer

uses Doxygen to document the contract between any user for the interface and what

the interface will do for the caller. The assert macro can even be used in the template

to ensure that the pre-conditions and post-conditions are adhered to in any subsequent

software.

Chapter 7 HAL Design for GPIO

174

For the GPIO HAL, Figure 7-2 shows an overview of the interface and how it

is organized into different files. The HAL contains header and source modules for

configuration data that is used to initialize the peripheral on startup and then header

and source modules that contain the behavior functions for the HAL.

Figure 7-2.  GPIO HAL organization

So far, we have discussed every aspect required to develop our template and

application stubs. Let’s now examine the documentation for each interface in the GPIO

HAL. Listings 7-1 to 7-4 provide the documentation for each HAL GPIO interface. The

documentation is detailed and fully self-explanatory, so I leave it up to the reader to

examine each figure before catching back up with me in Step #5.

Listing 7-1.  Code Listing for Dio_Config.h

/** @file dio_cfg.h

 * @brief This module contains interface definitions for the

* Dio configuration. This is the header file for the definition of the

* interface for retrieving the digital input/output configuration table.

*/

#ifndef DIO_H_

#define DIO_H_

/**

* Includes

**/

/**

* Preprocessor Constants

**/

/**

Chapter 7 HAL Design for GPIO

175

 * Defines the number of pins on each processor port.

 */

#define NUMBER_OF_CHANNELS_PER_PORT 8U

/**

 * Defines the number of ports on the processor.

 */

#define NUMBER_OF_PORTS 8U

/**

* Typedefs

**/

/**

 * Defines the possible states for a digital output pin.

 */

 typedef enum

 {

 DIO_LOW, /** Defines digital state

ground */

 DIO_HIGH, /** Defines digital state

power */

 DIO_PIN_STATE_MAX /** Defines the maximum

digital state */

 }DioPinState_t;

/**

 * Defines an enumerated list of all the channels (pins) on the MCU

* device. The last element is used to specify the maximum number of

* enumerated labels.

 */

typedef enum

{

 /* TODO: Populate this list based on available MCU pins */

 FCPU_HB, /**< PORT1_0 */

 PORT1_1, /**< PORT1_1 */

Chapter 7 HAL Design for GPIO

176

 PORT1_2, /**< PORT1_2 */

 PORT1_3, /**< PORT1_3 */

 UHF_SEL, /**< PORT1_4 */

 PORT1_5, /**< PORT1_5 */

 PORT1_6, /**< PORT1_6 */

 PORT1_7, /**< PORT1_7 */

 DIO_MAX_PIN_NUMBER /**< MAX CHANNELS */

}DioChannel_t;

/**

 * Defines the possible DIO pin multiplexing values. The datasheet

* should be reviewed for proper muxing options.

 */

typedef enum

{

 /* TODO: Populate with possible mode options */

 DIO_MAX_MODE

}DioMode_t;

/**

 * Defines the possible states of the channel pull-ups

 */

typedef enum

{

 DIO_PULLUP_DISABLED, /*< Used to disable the internal pull-ups */

 DIO_PULLUP_ENABLED, /*< Used to enable the internal pull-ups */

 DIO_MAX_RESISTOR /*< Resistor states should be below this value

*/

}DioResistor_t;

/**

 * Defines the digital input/output configuration table’s elements that are

used

 * by Dio_Init to configure the Dio peripheral.

 */

Chapter 7 HAL Design for GPIO

177

typedef struct

{

 /* TODO: Add additional members for the MCU peripheral */

 DioChannel_t Channel; /**< The I/O pin */

 DioResistor_t Resistor; /**< ENABLED or DISABLED */

 DioDirection_t Direction; /**< OUTPUT or INPUT */

 DioPinState_t Data; /**<HIGH or LOW */

 DioMode_t Function; /**< Mux Function - Dio_Peri_Select*/

}DioConfig_t;

/**

 * Defines the slew rate settings available

 */

typedef enum

{

 FAST, /**< Fast slew rate is configured on the corresponding pin, */

 SLOW /**< Slow slew rate is configured on the corresponding pin, */

}DioSlew_t;

/**

* Function Prototypes

**/

#ifdef __cplusplus

extern "C"{

#endif

const DioConfig_t * const Dio_ConfigGet(void);

#ifdef __cplusplus

} // extern "C"

#endif

#endif /*DIO_H_*/

/***End of File**/

Chapter 7 HAL Design for GPIO

178

Listing 7-2.  Code Listing for Dio_Config.c

/** @file dio_cfg.c

 * @brief This module contains the implementation for the digital

* input/output peripheral configuration

 */

/**

* Includes

**/

#include "dio_cfg.h" /* For this modules definitions */

/**

* Module Preprocessor Constants

**/

/**

* Module Preprocessor Macros

**/

/**

* Module Typedefs

**/

/***

* Module Variable Definitions

**/

/**

 * The following array contains the configuration data for each

* digital input/output peripheral channel (pin). Each row represents a *

single pin. Each column is representing a member of the DioConfig_t

* structure. This table is read in by Dio_Init, where each channel is then

* set up based on this table.

 */

Chapter 7 HAL Design for GPIO

179

const DioConfig_t DioConfig[] =

{

/* Resistor Initial */

/* Channel Enabled Direction Pin Function */

/* */

{ PORT1_0, DISABLED, OUTPUT, HIGH, FCN_GPIO },

{ PORT1_1, DISABLED, OUTPUT, HIGH, FCN_GPIO },

{ PORT1_2, DISABLED, OUTPUT, HIGH, FCN_GPIO },

{ PORT1_3, DISABLED, OUTPUT, HIGH, FCN_GPIO },

{ PORT1_4, DISABLED, OUTPUT, HIGH, FCN_GPIO },

{ PORT1_5, DISABLED, OUTPUT, HIGH, FCN_GPIO },

{ PORT1_6, DISABLED, OUTPUT, HIGH, FCN_GPIO },

{ PORT1_7, DISABLED, OUTPUT, HIGH, FCN_GPIO },

};

/**

* Function Prototypes

**/

/**

* Function Definitions

**/

/**

* Function : Dio_Init()

*//**

* \b Description:

*

* This function is used to initialize the Dio based on the configuration

* table defined in dio_cfg module.

*

* PRE-CONDITION: Configuration table needs to populated (sizeof > 0)

*

* POST-CONDITION: A constant pointer to the first member of the

* configuration table will be returned.

*

Chapter 7 HAL Design for GPIO

180

* @return A pointer to the configuration table.

*

* \b Example Example:

* @code

* const Dio_ConfigType *DioConfig = Dio_GetConfig();

*

* Dio_Init(DioConfig);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

*

**/

const DioConfig_t * const Dio_ConfigGet(void)

{

/*

* The cast is performed to ensure that the address of the first element

* of configuration table is returned as a constant pointer and NOT a

* pointer that can be modified.

*/

 return (const *)DioConfig[0];

}

/*************** END OF FUNCTIONS ********************************/

Listing 7-3.  Listing for Dio.h

/** @file dio.h

 * @brief The interface definition for the dio.

 *

 * This is the header file for the definition of the interface for a digital

 * input/output peripheral on a standard microcontroller.

 */

Chapter 7 HAL Design for GPIO

181

#ifndef DIO_H_

#define DIO_H_

/**

* Includes

**/

#include <stdint.h> /* For standard type definitions */

#include "dio_cfg.h" /* For dio configuration */

#include "constants.h" /* For HIGH, LOW, etc */

/**

* Preprocessor Constants

**/

/**

* Configuration Constants

**/

/**

* Macros

**/

/**

* Typedefs

**/

/**

* Variables

**/

/**

* Function Prototypes

**/

#ifdef __cplusplus

extern "C"{

#endif

Chapter 7 HAL Design for GPIO

182

void Dio_Init(const DioConfig_t * const Config);

DioPinState_t Dio_ChannelRead(DioChannel_t Channel);

void Dio_ChannelWrite(DioChannel_t Channel, DioPinState_t State);

void Dio_ChannelToggle(DioChannel_t Channel);

void Dio_RegisterWrite(uint32_t Address, TYPE Value);

TYPE Dio_RegisterRead(uint32_t Address);

void Dio_CallbackRegister(DioCallback_t Function,

TYPE (*CallbackFunction)(type));

#ifdef __cplusplus

} // extern "C"

#endif

#endif /*DIO_H_*/

/*** End of File **/

Listing 7-4.  Listing for Dio.c

/** @file dio.c

 * @brief The implementation for the dio.

 */

/**

* Includes

**/

#include "dio.h" /* For this modules definitions */

#include <xxx.h> /* For Hardware definitions */

/**

* Module Preprocessor Constants

**/

/***

* Module Preprocessor Macros

**/

Chapter 7 HAL Design for GPIO

183

/**

* Module Typedefs

**/

/**

* Module Variable Definitions

**/

/**

* Defines a table of pointers to the peripheral input register on the

* microcontroller.

*/

static TYPE volatile * const DataIn[NUM_PORTS] =

{

 (TYPE*)®ISTER1, (TYPE*)®ISTER2,

};

/**

 * Defines a table of pointers to the peripheral data direction register

on

* the microcontroller.

 */

static TYPE volatile * const DataDirectin[NUM_PORTS] =

{

 (TYPE*)®ISTER1, (TYPE*)®ISTER2,

};

/**

 * Defines a table of pointers to the peripheral latch register on the

 * microcontroller

 */

static TYPE volatile * const DataOut[NUM_PORTS] =

{

 (TYPE*)®ISTER1, (TYPE*)®ISTER2,

};

/**

Chapter 7 HAL Design for GPIO

184

 * Defines a table of pointers to the peripheral resistor enable register

 * on the microcontroller

 */

static TYPE volatile * const Resistor[NUM_PORTS] =

{

 (TYPE*)®ISTER1, (TYPE*)®ISTER2,

};

/**

 * Defines a table of pointers to the port’s function select register

 * on the microcontroller

 */

static TYPE volatile * const Function[NUM_PORTS] =

{

 (TYPE*)®ISTER1, (TYPE*)®ISTER2,

};

/**

* Function Prototypes

**/

/**

* Function Definitions

**/

/***

* Function : Dio_Init()

*//**

* \b Description:

*

* This function is used to initialize the Dio based on the configuration

* table defined in dio_cfg module.

*

* PRE-CONDITION: Configuration table needs to populated (sizeof > 0)

* PRE-CONDITION: NUMBER_OF_CHANNELS_PER_PORT > 0

* PRE-CONDITION: NUMBER_OF_PORTS > 0

* PRE-CONDITION: The MCU clocks must be configured and enabled.

*

Chapter 7 HAL Design for GPIO

185

* POST-CONDITION: The DIO peripheral is set up with the configuration

* settings.

*

* @param Config is a pointer to the configuration table that

* contains the initialization for the

peripheral.

*

* @return void

*

* \b Example:

* @code

* const DioConfig_t *DioConfig = Dio_ConfigGet();

*

* Dio_Init(DioConfig);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*

**/

void Dio_Init(const DioConfig_t * Config)

{

 /* TODO: Define implementation */

}

/**

* Function : Dio_ChannelRead()

*//**

* \b Description:

*

Chapter 7 HAL Design for GPIO

186

* This function is used to read the state of a dio channel (pin)

*

* PRE-CONDITION: The channel is configured as INPUT

* PRE-CONDITION: The channel is configured as GPIO

* PRE-CONDITION: The channel is within the maximum DioChannel_t

* definition

*

* POST-CONDITION: The channel state is returned.

*

* @param Channel is the DioChannel_t that represents a pin

*

* @return The state of the channel as HIGH or LOW

*

* \b Example:

* @code

* uint8_t pin = Dio_ReadChannel(PORT1_0);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*

**/

DioPinState_t Dio_ChannelRead(DioChannel_t Channel)

{

}

/**

* Function : Dio_ChannelWrite()

*//**

Chapter 7 HAL Design for GPIO

187

* \b Description:

*

* This function is used to write the state of a channel (pin) as either

* logic high or low through the use of the DioChannel_t enum to select

* the channel and the DioPinState_t to define the desired state.

*

* PRE-CONDITION: The channel is configured as OUTPUT

* PRE-CONDITION: The channel is configured as GPIO

* PRE-CONDITION: The channel is within the maximum DioChannel_t definition

*

* POST-CONDITION: The channel state will be State

*

* @param Channel is the pin to write using the DioChannel_t

* enum definition

* @param State is HIGH or LOW as defined in the

* DioPinState_t enum

*

* @return void

*

* \b Example:

* @code

* Dio_WriteChannel(PORT1_0, LOW); // Set the PORT1_0 pin low

* Dio_WriteChannel(PORT1_0, HIGH); // Set the PORT1_0 pin high

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*

Chapter 7 HAL Design for GPIO

188

**/

void Dio_ChannelWrite(DioChannel_t Channel, DioPinState_t State)

{

}

/**

* Function : Dio_ChannelToggle()

*//**

* \b Description:

*

* This function is used to toggle the current state of a channel (pin).

*

* PRE-CONDITION: The channel is configured as OUTPUT

* PRE-CONDITION: The channel is configured as GPIO

* PRE-CONDITION: The channel is within the maximum DioChannel_t definition

*

* POST-CONDITION:

*

* @param Channel is the pin from the DioChannel_t that is

* to be modified.

*

* @return void

*

* \b Example:

* @code

* Dio_ChannelToggle(PORTA_1);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

Chapter 7 HAL Design for GPIO

189

*

*
 - HISTORY OF CHANGES -

*

**/

void Dio_ChannelToggle(DioChannel_t Channel)

{

}

/**

* Function : Dio_RegisterWrite()

*//**

* \b Description:

*

* This function is used to directly address and modify a Dio register.

* The function should be used to access specialied functionality in the

* Dio peripheral that is not exposed by any other function of the

* interface.

*

* PRE-CONDITION: Address is within the boundaries of the Dio register

* addresss space

*

* POST-CONDITION: The register located at Address with be updated

* with Value

*

* @param Address is a register address within the Dio

* peripheral map

* @param Value is the value to set the Dio register to

*

* @return void

*

* \b Example:

* @code

* Dio_RegisterWrite(0x1000, 0x15);

* @endcode

*

Chapter 7 HAL Design for GPIO

190

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*

**/

void Dio_RegisterWrite(uint32_t Address, TYPE Value)

{

}

/**

* Function : Dio_RegisterRead()

*//**

* \b Description:

*

* This function is used to directly address a Dio register. The function

* should be used to access specialied functionality in the Dio peripheral

* that is not exposed by any other function of the interface.

*

* PRE-CONDITION: Address is within the boundaries of the Dio register

* addresss space

*

* POST-CONDITION: The value stored in the register is returned to the

* caller

*

* @param Address is the address of the Dio register to read

*

* @return The current value of the Dio register.

*

* \b Example:

* @code

Chapter 7 HAL Design for GPIO

191

* DioValue = Dio_RegisterRead(0x1000);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*

*

**/

TYPE Dio_RegisterRead(uint32_t Address)

{

}

/**

* Function : Dio_CallbackRegister()

*//**

* \b Description:

*

* This function is used to set the callback functions of the dio driver. By

* default, the callbacks are initialized to a NULL pointer. The driver may

* contain more than one possible callback, so the function will take a

* parameter to configure the specified callback.

*

* PRE-CONDITION: The DioCallback_t has been populated

* PRE-CONDITION: The callback function exists within memory.

*

* POST-CONDITION: The specified callback function will be registered

* with the driver.

*

Chapter 7 HAL Design for GPIO

192

* @param Function is the callback function that will be registered

* @param CallbackFunction is a function pointer to the desired

* function

*

* @return None.

*

* \b Example:

* @code

* DioCallback_t Dio_Function = DIO_SAMPLE_COMPLETE;

*

* Dio_CallbackRegister(Dio_Function, Dio_SampleAverage);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*

**/

void Dio_CallbackRegister(DioCallback_t Function,

TYPE (*CallbackFunction)(type))

{

}

/*************** END OF FUNCTIONS ********************************/

�Step #5: Implement GPIO HAL for Target Processor
To many developers, Step #5 is the most exciting part for the development process—

porting the HAL to a real target. In the following example, the GPIO HAL is implemented

for the NXP KL25Z Freedom Board, which contains an ARM Cortex-M microcontroller.

Chapter 7 HAL Design for GPIO

193

In the examples that follow, I’ve stripped out the function documentation and focused

just on the executable code.

Let’s start by examining the pointer arrays. Listing 7-5 shows how the GPIO registers

can be organized into similar groupings and mapped to memory. A pointer array is

created for each register type within the GPIO peripherals. A pointer to the register is

then added to the array, which will later allow the initialization and application code to

simply loop through the array to access the register.

Listing 7-5.  Pointer Array Memory Map Example for Kinetis-L KL25Z

/**

 * Defines a table of pointers to the Port Data Input Register

 */

uint32 volatile * const portsin[NUM_PORTS] =

{

 (uint32*)&GPIOA_PDIR, (uint32*)&GPIOB_PDIR,

};

/**

 * Defines a table of pointers to the port’s data-direction register

 */

uint32 volatile * const portsddr[NUM_PORTS] =

{

 (uint32*)&GPIOA_PDDR, (uint32*)&GPIOB_PDDR

};

/**

 * Defines a table of pointers to the Port Data Output Register

 */

uint32 volatile * const ports[NUM_PORTS] =

{

 (uint32*)&GPIOA_PDOR, (uint32*)&GPIOB_PDOR,

};

Chapter 7 HAL Design for GPIO

194

/**

 * Defines a table of pointers to the Port Data Toggle Register

 */

uint32 volatile * const ptoggle[NUM_PORTS] =

{

 (uint32*)&GPIOA_PTOR, (uint32*)&GPIOB_PTOR

};

/**

 * Defines a table of pointers to the Pin Control Registers

 */

uint32 volatile * const pinctl[NUM_PORTS] =

{

 (uint32*)&PORTA_PCR0, (uint32*)&PORTB_PCR0

};

Let’s start examining the Dio_Init code, which can be found in Listing 7-6. The

initialization is straightforward. A pointer to the configuration table is passed into the

interface, and a for loop is used to read each element one row at a time. Based on the

information stored in the configuration register, the appropriate register is accessed

through the pointer array and the correct bits within the register are set based on the

configuration.

Listing 7-6.  GPIO Initialization Example for Kinetis-L KL25Z

void Dio_Init(const Dio_ConfigType * Config)

{

 uint8 i = 0; // Loop counter variable

 uint8 number = 0; // Port Number

 uint8 position = 0; // Pin Number

 // Loop through all pins, set the data register bit and the data-direction

 // register bit according to the dio configuration table values

 for (i = 0; i < NUM_DIGITAL_PINS; i++)

 {

 number = Config[i].Channel / NUM_PINS_PER_PORT;

 position = Config[i].Channel % NUM_PINS_PER_PORT;

Chapter 7 HAL Design for GPIO

195

 // Set the Data-Direction register bit for this channel

if (Config[i].Direction == OUTPUT)

{

 *portsddr[number] |= (1UL<<(position));

 }

 else

 {

 *portsddr[number] &=~ (1UL<<(position));

 }

// Set the Data register bit for this channel

if (Config[i].Data == HIGH)

{

*ports[number] |= (1UL<<(position));

}

else

{

*ports[number] &= ~(1UL<<(position));

}

 }

}

Once the initialization code is created, the remaining HAL functions are relatively

simple to implement. They simply access the pointer array and either set or retrieve

register data. For example, the Dio_ChannelRead code, which can be seen in Listing 7-7,

reads in the state for the input register, shifts the data, and determines whether the bit is

set high or low.

Listing 7-7.  GPIO ChannelRead Example for Kinetis-L KL25Z

DioPinState_t Dio_ChannelRead(DioChannel_t Channel)

{

 /* Read the port associated with the desired pin */

 DioPinState_t PortState =

 (DioPinState_t)*portsin[Channel/NUM_PINS_PER_PORT];

Chapter 7 HAL Design for GPIO

196

 /* Determine the port bit associated with this channel */

 DioPinState_t PinMask =

 (DioPinState_t)(1UL<<(Channel%NUM_PINS_PER_PORT));

 /* Mask the port state with the pin and return the DioPinState */

 return ((PortState & PinMask) ? DIO_HIGH : DIO_LOW);

}

The Dio_ChannelWrite function needs to determine which GPIO register to access

and then which bits to set in order to set the state for the GPIO pin. This is done through

calculating the correct pointer array element to access and then setting the bit within the

register that corresponds to the pin. An example can be seen in Listing 7-8.

Listing 7-8.  GPIO ChannelWrite Example for Kinetis-L KL25Z

void Dio_ChannelWrite(DioChannel_t Channel, DioPinState_t State)

{

 if (State == DIO_HIGH)

 {

 *ports[Channel/NUM_PINS_PER_PORT] |=

 (1UL<<(Channel%NUM_PINS_PER_PORT));

 }

 else

 {

 *ports[Channel/NUM_PINS_PER_PORT] &=

 ~ (1UL<<(Channel%NUM_PINS_PER_PORT));

 }

}

The Dio_ChannelToggle function does the exact same thing as Dio_ChannelWrite

except that rather than accessing the output register, the toggle register is used.

Listing 7-9 shows the implementation for the toggle function.

Chapter 7 HAL Design for GPIO

197

Listing 7-9.  GPIO ChannelToggle Example for Kinetis-L KL25Z

void Dio_ChannelToggle(DioChannel_t Channel)

{

 *ptoggle[Channel/NUM_PINS_PER_PORT] |=

(1UL<<(Channel%NUM_PINS_PER_PORT));

}

In earlier chapters, we discussed the need to extend the HAL interface. The extension

for the interface is to handle custom peripheral behaviors that are not common to every

peripheral on every processor. In these applications, the ability to write to and read from

a generic register is very useful. The great part about implementing generic register read

and write functions is that once written they can be used repeatedly with only minor

modifications needed. The recommendation is that good programming practices are

followed by verifying the address and data that you are trying to access. Listings 7-10 and

7-11 show an example of what these functions might look like, excluding the defensive

checks.

Listing 7-10.  GPIO RegisterWrite Example for Kinetis-L KL25Z

void Dio_RegisterWrite(uint32_t Address, TYPE Value)

{

 uint32_t volatile * const RegisterPointer = (uint32_t *) Address;

 *RegisterPointer = Value;

}

Listing 7-11.  GPIO RegisterRead Example for Kinetis-L KL25Z

TYPE Dio_RegisterRead(uint32_t Address)

{

 uint32_t volatile * const RegisterPointer = (uint32_t *) Address;

 return *RegisterPointer;

}

Chapter 7 HAL Design for GPIO

198

�Step #6: Test, Test, Test
Setting up and creating test harnesses that can also perform regression testing is beyond

the scope of this book. Let’s briefly discuss the GPIO peripheral in general and a few tests

that should be performed after implementation to ensure that the driver is working as

expected.

First, the initialization function is the most complicated function within the HAL

interface. The maximum test case number is going to directly depend on the following:

•	 How many registers are included in the peripheral

•	 Maximum possible number of states those registers can have

•	 Maximum combination of states within the registers

In previous chapters, we examined how cyclomatic complexity can serve as an

indicator of the minimum number of test cases required to prove that a function behaves

as expected. At the lowest driver layers, cyclomatic complexity will not be much help

for the configuration code. The registers are really the primary dictator of the number of

test cases required. Cyclomatic complexity can only help a developer ensure there are

enough test cases to test their driver functions.

The best place to start is at the configuration table. The configuration table lists the

primary features of the driver that need to be configured at startup. Manipulating and

automating this table and its configuration is the best bet for testing the initialization

code.

A developer will want to make sure that they develop at least enough test cases to

test all the linearly independent paths within their driver functions as well. Developers

may even want to consider getting logic analyzers to directly connect to their boards; the

analyzers can then be read through a script to verify that the input and output states on the

GPIO pins are correctly controlled. A simple script that uses a UART can also be created

that will also read in all the register settings and verify that they match what is expected.

�Step #7: Repeat for the Next Peripheral
At this point, the GPIO HAL is designed, templated, and documented, and a test example

has even been implemented for the NXP KL25Z. After running through a few basic test

cases to verify that the implementation works as expected, a developer is now ready to

Chapter 7 HAL Design for GPIO

199

move on to the next peripheral and begin designing the next HAL. In the next chapter,

we will examine the SPI peripheral and how we can design a basic HAL for it using the

techniques that we have been discussing in this book.

�Going Further
The GPIO peripheral is a foundational module that developers need to take the utmost

care when developing to ensure that their software scales. The following are some ideas

on how a developer can take the concepts discussed in this chapter and immediately

apply them to their own development cycle.

•	 Identify at least three different microcontrollers that you are currently

working with or interested in working with. Collect the GPIO

peripheral’s datasheets for each microcontroller.

•	 Review the datasheets in detail and generate a peripheral feature

list like the one shown in Table 7-1. How do the results compare?

Are they the same or have new peripheral features such as input

validation been discovered?

•	 Review the table and identify the features that belong in a standard

HAL interface. Create an initial HAL interface list and identify the

input and output features for the interfaces.

•	 Create a documented template using the skills learned in Chapter 5

on Doxygen and create the GPIO stubs. An alternative to creating the

template yourself is to visit www.beningo.com and purchase the templates

developed by Jacob Beningo.

•	 Identify the development board that the first port will be performed

on. Use the examples in this chapter to fill in the implementation

for the target. If the reader is interested in a working example that

can be used for educational purposes, examples for the NXP KL25Z

development board are available on www.beningo.com under Insights

➤ Toolkits.

Chapter 7 HAL Design for GPIO

http://www.beningo.com/
http://www.beningo.com/

200

•	 Develop basic test cases based on the configuration table and HAL

input and output features. Verify that the ported code behaves as

expected.

•	 Consider developing test-case document templates that will be used

to test ported GPIO code.

•	 Investigate how regression testing could be used to automatically

verify that the HAL is working as expected. Inject an error into the

code and verify that the regression testing is able to catch the issue.

Chapter 7 HAL Design for GPIO

201
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_8

CHAPTER 8

HAL Design for SPI

“No sensible decision can be made any longer without taking into account
not only the world as it is, but the world as it will be.”

—Isaac Asimov

�An Overview of SPI Peripherals
The Serial Peripheral Interface bus (SPI) is a high-speed serial bus that is commonly

used to interface with external memory, sensors, and many other devices. The SPI bus at

the hardware level requires the following:

•	 a Master Output Slave Input (MOSI) line

•	 a Master Input Slave Output line (MISO) line

•	 a clock (CLK) line

•	 at least a single slave select (SS) line

Every slave device that communicates with the master, typically the microcontroller,

has a slave select line that asserts which slave device is being communicated with.

The SPI bus can support as many slave devices as there are GPIO pins available to

communicate with them. The fact that a slave select pin is required for every device is

one disadvantage to using the SPI peripheral.

There are many advantages though. First, SPI is a very simple serial interface.

For every clock pulse, a master output bit and a slave output bit are clocked out

simultaneously on the bus. This behavior makes it so that bi-directional communication

can occur very quickly. Second, the SPI bus typically can communicate at 1 Mbps to

16 Mbps, which makes it an extremely fast communication channel. There are many

other advantages to using the SPI bus, but the last one that I will mention is that the SPI

peripheral is very easy to set up and use.

202

Figure 8-1 shows an example of how slave devices would be connected to a

microcontroller using the SPI bus. As you can see, the more slave devices there are, the

more GPIO pins that are required for the slave select.

Microcontroller

Device 1

MOSI

MISO

CLK

SS1

Device 2

Device 3

SS2

SS3

Figure 8-1.  Example SPI hardware architecture

�Step #1: Review the SPI Peripheral Datasheet
Just as we discussed before, a developer should gather several different microcontroller

datasheets in order to perform a comparison between the different peripherals’

capabilities. In the previous chapter, we created a simple feature-comparison table for

the GPIO peripheral, and this is exactly what we will do again for the SPI peripheral.

Since the SPI peripheral adheres to a strict standard, there will be far fewer differences in

feature sets than with GPIO.

During the initial datasheet review, developers should be attempting to get a general

feel for how the peripherals work and their general capabilities. The lower-level details,

such as the register mappings, are examined closely during the feature-identification

step. Most microcontroller datasheets contain thousands of pages of technical details. In

this step, just finding the right datasheet and identifying the correct pages and sections

in those manuals will prepare the developer for the real work that follows.

Chapter 8 HAL Design for SPI

203

�Step #2: SPI Peripheral Features
My personal preference is to always visualize data. I completely agree with the old

saying, “A picture is worth a thousand words”. Developers that are pulling together a

comparison can do so using a simple feature matrix. Using the same microcontrollers as

we discussed in the last chapter results in a table like Table 8-1.

Table 8-1.  SPI Feature Comparison

Feature NXP KL25Z1 STM32F42 PIC24F3 PIC18F4

Master/Slave X X X X

Tx/Rx X X X X

Wait mode X X

Bi-directional X X

High-speed

dual output

X X

MSB/LSB X X X X

DMA X X

CRC X

The table can be used by developers to quickly determine the common and

uncommon features in the peripheral that later either will be placed into the HAL or will

require a HAL extension. When the reader walks through their own SPI peripherals, they

may find that they have significantly more features available than I’ve listed. The goal

here is to provide an example and leave some work to the reader.

1�NXP KL25Z Sub-Family Reference Manual
2�ST Microelectronics STM32F427xx Datasheet
3�Microchip PIC24FJ128GA010 Family Datasheet
4�Microchip PIC18F2455 Datasheet

Chapter 8 HAL Design for SPI

204

�Step #3: Design and Create the SPI HAL Interface
Just as we did before, the next step is to create the SPI HAL interface. Table 8-1 provides

a developer with some functional details that the HAL is going to need to exhibit in order

to give the application developer enough control over the hardware. What’s interesting

about most SPI peripherals is that most of the features can simply be controlled by the

way we initialize the peripheral. The interface itself only requires a few very simple

functions. For SPI, the required interfaces will be the following:

•	 Initialization

•	 Data transmit and receive

•	 Low-level register access

•	 Callbacks

You will notice a similarity between these interface needs and the GPIO. The only

difference is that instead of an Input/Output feature there is a Data Transmit and

Receive, which could still be considered Input/Output. Most peripherals will have a very

similar outline for their interface.

A developer will want to decide what the major inputs and outputs required

to configure and run the SPI bus are and decide on the operations that need to be

performed on the bus. The operations go in the interface, and the inputs and outputs will

be used by the operations in some way. For example, a configuration table that is used to

initialize the SPI peripheral will contain all the data required to set up the peripheral and

will be passed into the Spi_Init function.

The resulting interface for the SPI HAL would look something along the lines of

Figure 8-2. Notice how the interface follows a very similar pattern to the GPIO HAL and

that it is easily readable and extendable.

Chapter 8 HAL Design for SPI

205

�Step #4: Create SPI Stubs and Documentation
Templates
Once again, get out your template-making hat! It’s time to create the documentation and

the function stubs that will be used for the SPI HAL. When the stubs and documentation

are complete, don’t forget to save these templates. They represent the stand-alone SPI

interface without any implementation details in the modules. It’s always a good idea to

save a clean template, and then if specific design patterns will be implemented behind

the scenes, save those separately.

CASE STUDY—DESIGN PATTERNS AND TEMPLATES

Design patterns are a solution to a common problem that exists in software engineering. There

are many different design patterns, such as using a circular buffer for receiving UART data.

As you develop your own interfaces, drivers, and application code, keep an eye open for

repeating patterns. These patterns should be captured and saved into a template so that they

can be reapplied to future applications.

For example, transmitting and receiving data on the SPI bus will use a design pattern for how

the HAL is designed, but a design pattern can also be used also behind the scenes in the

implementation,. Design patterns save time by avoiding your having to reinvent the wheel.

Instead, a better wheel can be made.

Figure 8-2.  SPI HAL interface

Chapter 8 HAL Design for SPI

206

The SPI HAL will require several files in order to contain all the operations necessary

to communicate with an external device on the SPI bus. The modules that are necessary

can be found in Figure 8-3.

Figure 8-3.  SPI HAL module files

Once each file has been created, the generic Doxygen template can be used to fill

in the modules. A quick pass through to update for SPI would then be necessary. There

are several functions that will need to be added to the modules. In order to save the

reader time and effort, Listings 8-1 and 8-2 show an example of what is needed. Don’t

forget that each function should have its inputs and outputs documented as well as

provide a detailed example of how to use the interface. It also wouldn’t hurt to set up the

assertions at this point to validate the preconditions and post-conditions.

Listing 8-1.  SPI Init Function Template

/***

* Function : Spi_Init()

*//**

* \b Description:

*

* This function is used to initialize the Spi based on the configuration

table

* defined in spi_cfg module.

*

* PRE-CONDITION: Configuration table needs to populated (sizeof > 0)

* PRE-CONDITION: The MCU clocks must be configured and enabled.

*

* POST-CONDITION: The peripheral is set up with the configuration

*

Chapter 8 HAL Design for SPI

207

* @param[in] Config is a pointer to the configuration table that contains

* the initialization for the peripheral.

*

* @return void

*

* \b Example:

* @code

* const SpiConfig_t *SpiConfig = Spi_ConfigGet();

*

* Spi_Init(SpiConfig);

* @endcode

*

* @see Spi_ConfigGet

* @see Spi_Init

* @see Spi_Transfer

* @see Spi_RegisterWrite

* @see Spi_RegisterRead

* @see Spi_CallbackRegister

*

**/

void Spi_Init(SpiConfig_t const * const Config)

{

}

Listing 8-2.  SPI Transfer Function Template

/**

* Function : Spi_Transfer()

*//**

* \b Description:

*

* This function is used to initialize a data transfer on the SPI bus.

*

Chapter 8 HAL Design for SPI

208

* PRE-CONDITION: Spi_Init must be called with valid configuration data

* PRE-CONDITION: SpiTransfer_t must be configured for the device

* PRE-CONDITION: The MCU clocks must be configured and enabled.

*

* POST-CONDITION: Data transferred based on configuration

*

* @param[in] Config is a configured structure describing the data

* transfer that occurs.

*

* @return void

*

* \b Example:

* @code

* const SpiConfig_t *SpiConfig = Spi_ConfigGet();

*

* Spi_Init(SpiConfig);

* Spi_Transfer(AccelerometerConfig);

*

* @endcode

*

* @see Spi_ConfigGet

* @see Spi_Init

* @see Spi_Transfer

* @see Spi_RegisterWrite

* @see Spi_RegisterRead

* @see Spi_CallbackRegister

*

**/

void Spi_Transfer(SpiTransfer_t const * const Config)

{

}

In order to save the reader time and also muscle fatigue from having to carry

around a giant and heavy book, the templates for the helper functions and the common

RegisterRead, RegisterWrite, and callback functions have been left out. They are

Chapter 8 HAL Design for SPI

209

included in the example templates that go with this book. If needed, refer to Chapter 7 on

GPIO Hals and review how these function stubs are set up. The only difference between

the SPI and DIO setups is that the functions are preceded with Spi instead of Dio.

�Step #5: Implement SPI HAL for Target Processor
At this point, a template for the HAL is ready to go. There are several different ways the

implementation can be done, which we discussed earlier in the book. My personal

favorite is to use pointer arrays to map memory. This technique is very portable and

can very quickly be adapted for nearly any microcontroller. For this reason, I’ll show an

example how I implement SPI using this technique.

In the following example, the SPI HAL is implemented for the NXP KL25Z Freedom

Board, which contains an ARM Cortex-M microcontroller. I’ve stripped out the function

documentation and focused just on the executable code since we have already examined

the documentation that should precede these functions.

Let’s start by examining the pointer arrays. Listing 8-3 shows how the SPI registers

can be organized into similar groupings and mapped to memory. A pointer array is

created for each register type within the SPI peripherals. A pointer to the register is

then added to the array, which will later allow the initialization and application code to

simply loop through the array to access the register.

Each microcontroller will have different registers and register types. In this example,

only a few registers are shown to demonstrate the general flow of how a developer would

implement their driver.

Listing 8-3.  Example SPI Pointer-Array Mapping

/**

 * Defines a pointer table to the spi control 0 registers.

 */

uint8_t volatile * const spicon1[NUM_SPI_CHANNELS] =

{

 (uint8_t*)&SPI0_C1, (uint8_t*)&SPI1_C1

};

Chapter 8 HAL Design for SPI

210

/**

 * Defines a pointer table to the spi control 1 registers.

 */

uint8_t volatile * const spicon2[NUM_SPI_CHANNELS] =

{

 (uint8_t*)&SPI0_C2, (uint8_t*)&SPI1_C2

};

/**

 * Defines a pointer table to the spi status registers.

 */

uint8_t volatile * const spistat[NUM_SPI_CHANNELS] =

{

 (uint8_t*)&SPI0_S, (uint8_t*)&SPI1_S

};

/**

 * Defines a pointer table to the spi bit-rate control registers.

 */

uint8_t volatile * const spibr[NUM_SPI_CHANNELS] =

{

 (uint8_t*)&SPI0_BR, (uint8_t*)&SPI1_BR

};

Just like before, setting up these pointers is a great way to access memory and set up

initialization functions that easily loop through a configuration table and then set the bit

values in the registers. An example initialization function can be found in Listing 8-4.

Listing 8-4.  Example SPI Initialization Function

void Spi_Init(Spi_ConfigType const * const Config)

{

 uint8_t Index = 0; // Loop index variable

 for(Index=0; Index < NUM_SPI_CHANNELS; Index++)

 {

 if(Config[Index].SpiEnable == ENABLED)

Chapter 8 HAL Design for SPI

211

 {

 // Enable clock gate for spi channel

 *spigate |= spipins[Index];

 // Disable the SPI channel

 *spicon1[Index] &= ~REGBIT6;

 // Set the MASTER/SLAVE mode

 if(Config[Index].MasterMode == MASTER)

 {

 *spicon1[Index] |= REGBIT4;

 }

 else

 {

 *spicon1[Index] &= ~REGBIT4;

 }

 // Set SPI clock frequency

 Spi_SetBaud(Config[Index]);

 // Set Wait mode

 if(Config[Index].WaitMode == DISABLED)

 {

 *spicon2[Index] |= REGBIT1;

 }

 else

 {

 *spicon2[Index] &= ~REGBIT1;

 }

 // Set Bidirectional mode

 if(Config[Index].Bidirection == ENABLED)

 {

 *spicon2[Index] |= REGBIT0 + REGBIT3;

 }

Chapter 8 HAL Design for SPI

212

 else

 {

 *spicon2[Index] &= ~(REGBIT0 + REGBIT3);

 }

 // Set slave select mode

 Spi_SetSS(Config[Index]);

 // Calculate transfer delay using clock frequency

 Spi_CalcDelay(Config[Index]);

 // Re-enable the SPI channel

 *spicon1[Index] |= REGBIT6;

 }

 }

}

In order to save space, the configuration structure is not shown, but from reviewing

the initialization function, you can easily see the information that is being stored there.

The SPI bus is a unique communication interface in that it receives data while it

transmits data. This makes the SPI bus very efficient. We can use the transmit buffer to

store the receive data, which limits how much RAM we need to allocate to communicate

with slave devices.

Creating a robust Spi_Transfer function isn’t trivial or something that should be

attempted without first thinking through the design and process. The SPI bus, while

simple, does require that certain steps be followed in order to successfully handle all the

possible cases. Figure 8-4 shows the steps the driver must go through to transfer data.

In many cases, each step can be placed into a separate helper function to keep the code

readable and maintainable. The function overhead will slightly affect the performance

unless the functions are in-lined.

Chapter 8 HAL Design for SPI

213

The flow chart looks simple, but there is an important consideration that developers

need to look at that I often see overlooked. If something goes wrong, the driver needs

to be able to detect that the communication timed out. Most drivers I review assume

that everything will always work as expected and end up hanging up because a device

at some point fails to respond or something happens that prevents the “transmission

complete” flag from being set. Make sure that you think through the potential failure

points and how the higher-level application will be notified that a device is not

responding.

The Spi_Transfer implementation can be found in Listing 8-5.

Listing 8-5.  Example Spi_Transfer Function

void Spi_Transfer(const Spi_TransferType * const Config)

{

 uint16_t i = 0;

 uint16_t j = 0;

 uint32_t x = 0;

 // Setup the spi registers with the spi device settings

 Spi_Setup(Config);

 // Initialize the chip select

 Spi_SetCs(Config);

Figure 8-4.  SPI Transfer Function Flow Chart

Chapter 8 HAL Design for SPI

214

 /***

 * Transmit (and receive) the data one byte at a time.

 ***/

 for(i = 0; i < Config->NumBytes; i++)

 {

 /***

 * Check the shift direction. If it is LSBit first, reverse the order

 * in which we transmit each byte (last byte first) as well.

 ***/

 if (Config->Direction == LSB_FIRST)

 {

 j = Config->NumBytes - i - 1;

 }

 else

 {

 j=i;

 }

 Mcu_TimeoutStart(INTERVAL_10MS);

 // Check transmit buffer empty flag

 while(*spistat[Config->SpiChannel] & REGBIT5 == 0)

 {

 if(Mcu_TimeoutCheck() == 1)

 {

 Fault_StateSet(FAULT_SPI_TXFLAG);

 break;

 }

 }

 spibuf[Config->SpiChannel] = ((Config->TxRxData + j));

 for(x = 0; x < TransferDelay[Config->SpiChannel]; x++);

 Mcu_TimeoutStart(INTERVAL_10MS);

Chapter 8 HAL Design for SPI

215

 while(*spistat[Config->SpiChannel] & REGBIT7 == 0)

 {

 if(Mcu_TimeoutCheck() == 1)

 {

 Fault_StateSet(FAULT_SPI_RECEIVE);

 break;

 }

 }

 *(Config->TxRxData + j) = *spibuf[Config->SpiChannel];

 } // End for

 /***

 * Latch the data into the slave by de-selecting the chip select.

 ***/

 // In some cases the chip select will de-select the device

 // before the last bit is transmitted. This is due to the flag

 // options of this peripheral. In order to transmit properly, a

 // slight delay is included before deselection.

 for(x = 0; x < TransferDelay[Config->SpiChannel]; x++);

 Spi_ClearCs(Config);

}

�Step #6: Test, Test, Test
It is very easy for development teams to overlook having a robust and automated test

system. The time and effort required to create such a system can potentially be daunting,

especially for small- to medium-size businesses. Don’t let that discourage you from

developing an automated test harness. The time and cost investment decreases the

overall software life costs with the ability to easily verify that changes and updates

haven’t broken code.

Chapter 8 HAL Design for SPI

216

Take the time to implement a test harness at this early development stage and reap

the rewards for the entire development cycle.

�Step #7: Repeat for the Next Peripheral
At this point, a developer would continue to follow this process and develop a HAL

for every microcontroller peripheral. This would include peripherals such as analog-

to-digital converters, pulse-width modulators, UARTs, SPI buses, and so on. Since the

process remains very similar for each peripheral, we will now explore how we can take

the HAL that we have already started to create and build higher-level APIs that use the

HALs to perform a more abstract function.

In the next chapter, we will develop a HAL for EEPROM and memory devices that

can be used to access both internal and external devices. If you are still interested in

seeing how the HAL might look for other peripherals, “API Standard for MCUs” includes

a full API listing along with templates. It can be found at www.beningo.com.

�Going Further
The SPI peripheral is a foundational module that developers need to take the utmost

care developing to ensure that their software scales. The following are some ideas on

how a developer can take the concepts discussed in this chapter and immediately apply

them to their own development cycle.

•	 Identify at least three different microcontrollers that you are currently

working with or are interested in working with. Collect the SPI

peripheral datasheets for each microcontroller.

•	 Review the datasheets in detail and generate a peripheral feature list

like the one shown in Table 8-1. How do the results compare? Are

they the same or do they have new peripheral features beyond what

we discussed in this chapter?

•	 Review the table and identify the features that belong in a standard

HAL interface. Create an initial HAL interface list and identify the

input and output features for the interfaces

Chapter 8 HAL Design for SPI

http://www.beningo.com/

217

•	 Create a document template using the skills learned in Chapter 5

on Doxygen and create the SPI stubs. An alternative to creating the

template yourself is to visit www.beningo.com and purchase the

templates developed by Jacob Beningo.

•	 Identify the development board that the first port will be performed

on. Use the examples in this chapter to fill in the implementation

for the target. If the reader is interested in a working example that

can be used for educational purposes, examples for the NXP KL25Z

development board are available on www.beningo.com.

•	 Develop basic test cases based on the configuration table and HAL

input and output features. Verify that the ported code behaves as

expected.

•	 Consider developing test-case document templates that will be used

to test ported SPI code.

•	 Create automated test cases that can be executed daily to verify that

the HAL is working as expected. Don’t forget to inject errors to verify

that the regression tests are correct.

Chapter 8 HAL Design for SPI

http://www.beningo.com/
http://www.beningo.com/

219
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_9

CHAPTER 9

HAL Design for EEPROM
and Memory Devices

“Before software can be reusable, it must first be usable.”

—Ralph Johnson

�An Overview of Memory Devices
Nearly every embedded system requires non-volatile data storage in one form or

another. Whether a developer needs to store a simple system state or a complex set

of calibration data, there are several potential non-volatile storage devices that are

available, such as the following:

•	 Internal flash

•	 Internal EEPROM

•	 External EEPROM

•	 Externa flash

Using internal flash and EEPROM devices can be useful when you want to limit

external devices, product size, complexity, and cost. There can be several potential

issues with using internal memory storage, however. First, internal flash and EEPROM

devices tend to be more complex to set up and use than external devices. Developers

must grapple with setting internal clocks perfectly to ensure that the internal memory

devices are not damaged. Second, application code is stored either in or near the

220

internal memory devices. Manipulating these devices during runtime in a production

system could result in something going wrong and the application code or calibration

information being removed from the system.

Throughout my career, I’ve never had any issues using internal flash and EEPROM

devices. Every time that I have used one though it has required extra upfront care to

make sure that the implementation was correct. When using internal flash, there are

several additional issues that need to be addressed, as follows:

•	 How is the internal flash controller affected by a brownout event?

(I’ve seen the entire flash get erased in this situation when it was

enabled to erase/write)

•	 What is the maximum number of erase/write cycles? (Internal

memory is usually less than an external device)

•	 Does a circular buffer-type implementation need to be created in

order to minimize wear and tear on the flash?

•	 How much drift will there be in the clock at various voltages and

temperature ranges? Is it enough to cause an erase or write cycle

to fail?

The worst-case analysis on what can go wrong always seems to bring up more

potential issues than if you were using an external device. This doesn’t mean that

developers should avoid internal memory but simply that they need to be careful with

how they implement it.

In this section, we are going to develop a hardware abstraction layer that can be used

to govern both internal and external memory devices, with our primary focus being on

external EEPROM devices. The nice thing about the HAL is that it abstracts out these

devices so that the underlying details are completely hidden. The device could be an

internal or external device, on a SPI or I2C bus, or even be for different memories, such

as EEPROM, Flash, or some other architecture. A properly designed HAL doesn’t care

about the underlying implementation or architecture, which means that if we do our job

right, we can design an interface for memory devices once and use it for any memory

device in any project indefinitely.

Just as we did in the last several chapters, we will continue to follow our simple

seven-step process to design our memory HAL. In this case, we are going to focus

primarily on external EEPROM devices, but the HAL can easily be used with any

memory device on nearly any interface, as we mentioned before.

Chapter 9 HAL Design for EEPROM and Memory Devices

221

�Step #1: Review the EEPROM Peripheral Datasheet
Before a developer can start to design their HAL for memory devices, they need to review

the datasheets for several devices and determine what the common and uncommon

features are. If you take a moment to hop on Digikey.com, Mouser.com, or whatever your

favorite electronic part supplier is, you will notice that there are hundreds of potential

memory devices that are available, ranging in memory capabilities and interfaces. At

this first glance, it may seem slightly overwhelming how any developer could create a

standard interface that covers all those devices, let alone a subset. Don’t be discouraged!

It turns out that all memory devices have very similar capabilities and that the major

difference is interface and size. In fact, all these memory devices are managed by a

JEDEC standard, which not only makes the interface we will develop easy, but even

makes the underlying code reusable.

At this point, the goal is not to dig into any technical details but rather to identify

several different devices that the HAL will be based on. Select a few devices from

manufacturers that you are comfortable with and download the datasheets for a closer and

more detailed review. In this chapter, I’m going to examine the following memory devices:

•	 Microchip 25AA160D, 16 kb EEPROM1

•	 Microchip 25AA1024, 1 Mb EEPROM2

•	 Rohm BR25L640-W, 64 kb EEPROM3

•	 STMicroelectronics M95512-DR, 512 kB EEPROM4

•	 ONSemi CAT25128, 128 kb EEPROM5

1�Microchip 25AA160D, 16 kb EEPROM, https://www.digikey.com/product-detail/en/
microchip-technology/25AA160D-I-ST/25AA160D-I-ST-ND/2125495

2�Microchip 25AA1024, https://www.digikey.com/product-detail/en/
microchip-technology/25AA1024T-I-SM/25AA1024T-I-SMTR-ND/1228443

3�Rohm BR25L640-W, 64 kb EEPROM
4�STMicroelectronics M95512-DR, 512 kB EEPROM, https://www.digikey.com/product-detail/
en/stmicroelectronics/M95512-DRDW3TP-K/497-14457-1-ND/4729165

5�ONSemi CAT25128, 128 kb EEPROM, https://www.digikey.com/product-detail/en/
on-semiconductor/CAT25128VI-GT3/CAT25128VI-GT3OSTR-ND/2063309

Chapter 9 HAL Design for EEPROM and Memory Devices

https://www.digikey.com/product-detail/en/microchip-technology/25AA160D-I-ST/25AA160D-I-ST-ND/2125495
https://www.digikey.com/product-detail/en/microchip-technology/25AA160D-I-ST/25AA160D-I-ST-ND/2125495
https://www.digikey.com/product-detail/en/microchip-technology/25AA1024T-I-SM/25AA1024T-I-SMTR-ND/1228443
https://www.digikey.com/product-detail/en/microchip-technology/25AA1024T-I-SM/25AA1024T-I-SMTR-ND/1228443
https://www.digikey.com/product-detail/en/stmicroelectronics/M95512-DRDW3TP-K/497-14457-1-ND/4729165
https://www.digikey.com/product-detail/en/stmicroelectronics/M95512-DRDW3TP-K/497-14457-1-ND/4729165
https://www.digikey.com/product-detail/en/on-semiconductor/CAT25128VI-GT3/CAT25128VI-GT3OSTR-ND/2063309
https://www.digikey.com/product-detail/en/on-semiconductor/CAT25128VI-GT3/CAT25128VI-GT3OSTR-ND/2063309

222

These devices provide a basic sampling that we can use to develop our HAL, but

nearly any device could be selected.

CASE STUDY—MEMORY DÉJÀ VU

I was creating a driver for another external memory device when I started to get the feeling

that I had written the exact same code before. The memory device that I was working with

was completely different from the one we had used on the last project, yet I kept getting a

feeling of déjà vu.

Finally, I couldn’t take it any longer and went back to review the code from the previous

project. Sure enough, despite being a completely different memory device, the basic

commands were identical! Further investigation revealed that there was a standard that the

devices were following.

The moral of the story is that we need to always be on the lookout for repeating patterns in the

work that we do and leverage anything that already exists that we can. After this realization, I

created a reusable interface that I still use to this day.

�Step #2: EEPROM Peripheral Features
Once the datasheets have been gathered and a developer has had a chance to peruse

them briefly, it is time to dig into the details and start comparing the different devices.

Just as before, the easiest way to compare the different features is to create a basic

spreadsheet and list each device and feature on the axes and then place a checkmark

where a feature is present on the device. Table 9-1 shows a basic summary of the features

that I found in the devices I mentioned previously.

Chapter 9 HAL Design for EEPROM and Memory Devices

223

The JEDEC standard can be easily seen in Table 9-1. These are the features that are

supported by every device, such as the Write Enable and Disable features. Just like with

a microcontroller peripheral, many memory manufacturers will include the JEDEC

standard features but also attempt to differentiate themselves by adding additional

features that developers might find useful. For example, the Microchip 25AA1024

includes a Page Erase feature, which would typically be present in a flash controller

rather than an EEPROM controller. The feature gives developers an easy method for

quickly erasing large amounts of data. Such a feature could be very useful but also very

dangerous if not properly used and protected in source code.

Table 9-1.  EEPROM Device Feature Comparison

Feature Microchip
25AA160D

Microchip
25AA1024

Rohm
BR25L640-W

STM
M95512-DR

Write Enable X X X X

Write Disable X X X X

Write X X X X

Read X X X X

Read Status X X X X

Write Status X X X X

Page Erase X

Sector Erase X

Power Down X

Read ID X

Write ID X

Lock Status X

Chapter 9 HAL Design for EEPROM and Memory Devices

224

�Step #3: Design and Create the EEPROM HAL
Interface
Once again, Table 9-1 is our guide for creating the features and functions that we need in

our HAL. The functions we create to control our memory devices should be looked at as

operations to perform on data. The memory locations are the data, and the operations

might be things such as the following:

•	 Initialization

•	 Writing data

•	 Reading data

•	 Writing and reading the status register

Creating a HAL for EEPROM is just like any other peripheral except in this example

we are not going to include a callback function. A callback might exist if the EEPROM or

memory device is internal to the microcontroller. In this example though, the EEPROM

device is external to the microcontroller, which does not have any way to trigger an

internal interrupt on the microcontroller. For this reason, a callback is not included.

If a developer wanted to create an all-encompassing HAL that covered both internal

and external devices, they could include the callback and then just populate the code

depending on the circumstances.

An interface example can be seen in Figure 9-1. Notice that this HAL still follows

the standard pattern we have seen with microcontroller peripherals. There is still an

initialization function, a read/write function, and then register-access functions. The

primary difference here is that we have added an additional WriteStateSet function

that is used to control the write state of the memory. This easily could have been pulled

into the RegisterWrite capability, but in this example we want to explicitly create it in

the interface so that application users see that there may be extra steps necessary to work

with the memory device. If that detail were abstracted into the general RegisterWrite

capability, it might be easily overlooked. How a developer chooses to handle these types of

issues is dependent on their needs and preferences. There is not a right or wrong answer.

Chapter 9 HAL Design for EEPROM and Memory Devices

225

The HAL for the memory interface doesn’t look too bad. It could be much worse. The

first HAL version I created originally had more than a dozen different interfaces! I had

created the following:

•	 StatusRegisterWriteEnable

•	 StatusRegisterWriteDisable

•	 DataWriteEnable

•	 DataWriteDisable

Then, I had even extended the interface in the original HAL to include custom

features, such as the following:

•	 EraseChip

•	 EraseSector

•	 ErasePage

•	 PowerDown

•	 ReadID

The result was a HAL that had more than a dozen functions and was very difficult

to navigate and understand. In time, as I realized that the interface was too large, I

refactored the HAL so that it represented a much smaller and more manageable function

set. Everything related to custom features is now extended into a separate module that

is specific to the device, including all the erase functionality, identification, and energy-

savings modes. The main HAL was also refactored into the final version, shown in

Figure 9-1.

Figure 9-1.  Example EEPROM HAL interface

Chapter 9 HAL Design for EEPROM and Memory Devices

226

The HAL does include some custom datatypes. The primary HAL includes an

EepromWriteState_t. This allowed the original WriteEnable and WriteDisable

functions to be refactored from two separate functions to a single function that is

controlled by its parameters. The control is created by declaring a typedef enum with the

possible states, as shown in Figure 9-2.

Figure 9-2.  EEPROM write state enumeration

Figure 9-3.  Example EepromRegister_t definition

Developers also will need to consider the different registers that can be accessed

through the interface and will make up the EepromRegister_t. In general, this won’t be

done until the coding stage simply because the registers available will vary from one part

to the next. Just for fun though, we will get ahead of ourselves and show an example of

what the EepromRegister_t might look like in Figure 9-3.

At this point, the base HAL is in place and we are ready to start building the

documentation and software stubs.

Chapter 9 HAL Design for EEPROM and Memory Devices

227

�Step #4: Create EEPROM Stubs and Documentation
Templates
It is now time to build out the documentation templates and empty function stubs that

will be used to create the EEPROM HAL. At this point, the reader has gone through

this process several times and probably doesn’t need to see an example stub for every

EEPROM function. For this reason, we will focus on providing an example stub for just

the following functions:

•	 Eeprom_Init

•	 Eeprom_Write

•	 Eeprom_Read

The remaining documentation requirements will be very similar to what we have

already seen in previous chapters.

The first function to document is the Eeprom_Init function. Eeprom_Init is just

like every other initialization function that we have seen so far in this book except for

one crucial fact: the EepromConfig_t needs to contain a member that tells the driver

what communication port is being used to interact with the EEPROM device. EEPROM

could be internal to the microcontroller or on an I2C bus, SPI bus, or some other yet to

be invented interface. My earliest HAL implementations required an SpiTransfer_t or

I2cTransfer_t to be passed into the initialization function. That version required two

different HAL sets to be maintained, and, over time, they were refactored into a single

function that abstracts the communication interface into a configuration parameter.

When the documentation template is created, it is important not to forget about

determining the pre-conditions and post-conditions that are required in order for

the operation that will take place to be successful. In the chapter on Doxygen, we

discussed in detail what developers should be including in their documentation

along with example templates. Listing 9-1 through Listing 9-3 show how to create the

documentation stubs for the EEPROM HAL. Don’t forget that there would be other

functions along with additional source and header documentation.

Chapter 9 HAL Design for EEPROM and Memory Devices

228

Listing 9-1.  Example EEPROM Init HAL Documentation

/**

* Function : Eeprom_Init()

*//**

* \b Description:

*

* This function is used to initialize the eeprom. There are several

* operations that this function performs. First, it configures the

* communication channel that is used to interface with the EEPROM.

* Second, it enables write protection and disables the HOLD hardware

* feature.

*

* PRE-CONDITION: Dio driver initialized

* PRE-CONDITION: Communication driver initialized

*

* POST-CONDITION: The EEPROM device is initialized and write

* protected.

*

* @param Config is a pointer to a CommBus_t that contains the

* communication bus configuration information for interfacing to the

* EEPROM.

*

* @return void

*

* \b Example:

* @code

* const DioConfig_t *DioConfig = Dio_ConfigGet();

* const SpiConfig_t *SpiConfig = Spi_ConfigGet();

* const EepromConfig_t *EepromConfig = Eeprom_ConfigGet();

*

* Dio_Init(DioConfig);

* Spi_Init(SpiConfig);

* Eeprom_Init(EepromConfig);

* @endcode

*

Chapter 9 HAL Design for EEPROM and Memory Devices

229

* @see Eeprom_ConfigGet

* @see Eeprom_Init

* @see Eeprom_Read

* @see Eeprom_Write

* @see Eeprom_RegisterWrite

* @see Eeprom_RegisterRead

**/

void Eeprom_Init(const EepromConfig_t * Config)

{

 // Initialization code goes here!

}

Listing 9-2.  Example EEPROM Read HAL Documentation

/**

* Function : Eeprom_Read()

*//**

* \b Description:

*

* This function is used to initialize the eeprom. It currents enables write

* protection and disables the HOLD hardware feature.

*

* PRE-CONDITION: Dio driver initialized

* PRE-CONDITION: Spi driver initialized

* PRE-CONDITION: Eep_Init called

*

* POST-CONDITION: Size bytes are read from location Src into Dest.

*

* @param Dest - pointer to the location where data will be stored.

* @param Src - the starting address that is to be read

* @param Size - the number of bytes that are going to be read.

*

* @return void

*

* \b Example:

* @code

Chapter 9 HAL Design for EEPROM and Memory Devices

230

* const DioConfig_t *DioConfig = Dio_ConfigGet();

* const SpiConfig_t *SpiConfig = Spi_ConfigGet();

* const EepromConfig_t *EepromConfig = Eeprom_ConfigGet();

*

* Dio_Init(DioConfig);

* Spi_Init(SpiConfig);

* Eeprom_Init(EepromConfig);

* Eeprom_Read(Buffer, 0x0, 8);

* @endcode

*

* @see Eeprom_ConfigGet

* @see Eeprom_Init

* @see Eeprom_Read

* @see Eeprom_Write

* @see Eeprom_RegisterWrite

* @see Eeprom_RegisterRead

**/

void Eeprom_Read(uint8_t *Dest, uint32_t Src, uint32_t Size)

{

 // Enter Read code here!

}

Listing 9-3.  Example EEPROM Write HAL Documentation

/**

* Function : Eeprom_Write()

*//**

* \b Description:

*

* This function is used to write data to the eeprom device. There is a

limit

* of being able to only write 256 bytes of data to the eeprom at a time!

*

* PRE-CONDITION: Dio driver initialized

* PRE-CONDITION: Spi driver initialized

* PRE-CONDITION: Eep_Init called

Chapter 9 HAL Design for EEPROM and Memory Devices

231

*

* POST-CONDITION: Size bytes are written from location Src into Dest.

*

* @param Dest - Address where the data will be stored in eeprom.

* @param Src - pointer to the data to be stored

* @param Size - the size of the data that is going to be written.

*

* @return void

*

* \b Example:

* @code

* const DioConfig_t *DioConfig = Dio_ConfigGet();

* const SpiConfig_t *SpiConfig = Spi_ConfigGet();

* const EepromConfig_t *EepromConfig = Eeprom_ConfigGet();

*

* Dio_Init(DioConfig);

* Spi_Init(SpiConfig);

* Eeprom_Init(EepromConfig);

* Eeprom_Write(0x0, Buffer, 8);

* @endcode

*

* @see Eeprom_ConfigGet

* @see Eeprom_Init

* @see Eeprom_Read

* @see Eeprom_Write

* @see Eeprom_RegisterWrite

* @see Eeprom_RegisterRead

**/

�Step #5: Implement EEPROM HAL for Target
Processor
Implementing the HAL for an external EEPROM device is a little bit more exciting

than implementing a microcontroller peripheral driver. The reason is that the external

EEPROM device follows a standard and uses a communication interface on the

Chapter 9 HAL Design for EEPROM and Memory Devices

232

microcontroller, which means once we implement the base HAL we can literally reuse

the implementation without having to make any modifications. The only changes

that need to be made will be in the configuration files for the EEPROM setup or in the

extended HAL if we want to implement a non-standard feature.

This is exciting because we are finally at a point where we are writing code once

and reaping the benefits for every project thereafter. The other HALs certainly can be

reused, but if a team is moving from one microcontroller to the next, a little more work is

required, whereas with the external devices this code can be completely reused.

In this section, we are going to look through the implementation for the EEPROM

HAL, but we are only going to examine a minimum feature set. The EEPROM device will

also be an external SPI device. We will examine the following functions:

•	 Eeprom_Init

•	 Eeprom_Write

•	 Eeprom_Read

From these implementation details, readers should be able to create and fill in the

remaining HAL features on their own. Let’s start by examining the Eeprom_Init function

in Listing 9-4.

Listing 9-4.  Example EEPROM Initialization Function

void Eeprom_Init(const EepromConfig_t *Config)

{

 uint8_t Value;

 // Set up the internal configuration pointer

 EepromConfig = Config;

 // Disable HOLD pin in hardware. We will not be using this function.

 Dio_ChannelWrite(EEPROM_HOLD, HIGH);

 // Read status register

 Value = Eeprom_RegisterRead(EEPROM_READ_STATUS_REG);

Chapter 9 HAL Design for EEPROM and Memory Devices

233

 // Bits 2 and 3 of the status register are the block write protection, so

 // if (Value & 0x0C) is not zero, block write protection is enabled.

 if((Value & 0x0C))

 {

 // Disable write protection

 Eeprom_WriteProtection(EEPROM_WP_DISABLE);

 // Disable block write protection in status register

 Eeprom_RegisterWrite(EEPROM_WRITE_STATUS_REG, 0x00);

 }

}

Notice that the initialization function is simple and could be used with any standard

EEPROM device. The function starts by assigning the external EEPROM configuration

pointer to a local, module-defined variable. The hardware write protection is configured,

followed by the internal write protection. This initialization by default disables the write

protection, but a developer could create their own initialization that makes this feature

configuration defined. That would allow the default values to change based on the

application needs. (I leave that as an exercise for the reader to perform).

The next function that a developer would create is the Eeprom_Write function. An

example for this function can be seen in Listing 9-5.

Listing 9-5.  Example EEPROM Write Function

void Eeprom_Write(uint32_t Dest, uint8_t *Src, uint32_t Size)

{

 uint8_t status;

 // Setup Command

 EepromConfig.TxRxData[0] = EEPROM_WRITE;

 EepromConfig.TxRxData[1] = ((Dest & 0xFFFFFF) >> 16);

 EepromConfig.TxRxData[2] = ((Dest & 0xFFFF) >> 8);

 EepromConfig.TxRxData[3] = (Dest & 0xFF);

 // Fill the tx buffer with the data

 for(Index = 0; Index < Size; Index++)

Chapter 9 HAL Design for EEPROM and Memory Devices

234

 {

 EepromConfig.TxRxData[Index + 4] = Src[Index];

 }

 // Change transfer Size. Command, Address, Data

 EepromConfig.NumBytes = Size + 4;

 // Disable the write protection

 Dio_ChannelWrite(EEPROM_WP, DIO_HIGH);

 // Transmit the data command

 Spi_Transfer(&EepromConfig);

 status = Eeprom_RegisterRead(EEPROM_READ_STATUS_REG);

 // Poll the busy bit in status register

 while(status & 0x01)

 {

 status = Eeprom_RegisterRead(EEPROM_READ_STATUS_REG);

 }

 // Set the transfer size back to 2

 EepromConfig.NumBytes = 2;

 // Enable the write protection

 Dio_ChannelWrite(EEPROM_WP, DIO_LOW);

}

The code shown in Listing 9-5 is basic example code that does not perform any safety

checks on the data size that is coming in or performing any checks to verify that the data

written was done so successfully. However, it does demonstrate how this code could

be used with any EEPROM device. In a production-intent implementation, a developer

would make sure that at least the following cases are considered and handled:

•	 Source address is valid.

•	 Destination address is valid.

•	 Data size is valid.

Chapter 9 HAL Design for EEPROM and Memory Devices

235

•	 Check for write errors.

•	 Verify the written data by reading it back out and comparing it.

The write function starts out by defining the first four bytes in the data stream as

the command and the address that the data will be written to. Following this setup, the

data is copied into the transmit buffer. Once again, for production, there should be some

safety checks to make sure that the transmit buffer does not overflow. If the data cannot

fit within a single transaction then the code would need to set up multiple write actions.

To keep things simple, I’ve removed all these details.

With the transmit buffer set up, a developer updates the number of bytes to transmit

and then initiates the communication transfer. This example shows an explicit call to

the Spi_Transfer function, but a developer could implement this in such a way that

the transaction could occur on any bus. To do this, the function call would dereference

a function pointer to the desired transmit function. Before transmitting and writing the

data, the function also disables any write protection that might be enabled on the chip.

The write function will not be instantaneous. This driver uses a polled monitoring

technique to watch the status register for the “write complete” flag to be set. Once the

write has completed successfully, the write protection is enabled and the local variables

are reset to their default values.

The EEPROM read function turns out to be just as simple if not more so than the

write function. The read function can be found in Listing 9-6.

Listing 9-6.  Example EEPROM Read Function

void Eeprom_Read(uint8_t *Dest, uint32_t Src, uint32_t Size)

{

 uint16_t Index = 0;

 // Prepare the command

 EepromConfig.TxRxData[0] = EEPROM_READ;

 EepromConfig.TxRxData[1] = ((Src & 0xFFFFFF) >> 16);

 EepromConfig.TxRxData[2] = ((Src & 0xFFFF) >> 8);

 EepromConfig.TxRxData[3] = (Src & 0xFF);

 // Fill the output buffer with dummy data

 for(Index = 4; Index < Size + 4; Index++)

Chapter 9 HAL Design for EEPROM and Memory Devices

236

 {

 EepromConfig.TxRxData[Index] = 0xAA;

 }

 // Change the number of bytes being transmitted.

 // Command, Address, Dummy Data

 EepromConfig.NumBytes = Size + 4;

 // Transmit the data command

 Spi_Transfer(&EepromConfig);

 // Store the returned data

 for(Index = 0; Index < Size; Index++)

 {

 Dest[Index] = EepromConfig.TxRxData[Index + 4];

 }

 // Set the transfer size back to 2

 EepromConfig.NumBytes = 2;

}

Just like with the write function, the read function starts by configuring the

command and the address that will be read from. Once this is done, the Spi_Transfer

function is called to perform the transaction. When all the data has been read into the

buffer, the function copies the received data into the desired destination. Copying the

data could cause a slight performance hit on the EEPROM functionality. A developer

could also create their function so that the data is placed directly into the destination

location rather than in an intermediary buffer or use a pointer to directly access the data.

Don’t forget that the read function is just an example! Production code should

include assertion and runtime checks to make sure that the buffers do not overflow and

that all error conditions and use cases are covered appropriately. It should also take into

account the efficiency, performance, and memory usage.

Chapter 9 HAL Design for EEPROM and Memory Devices

237

�Step #6: Test, Test, Test
After discussing this step three times previously, I don’t think I have much more to

add. Testing the HAL is critical and having an automated way to do so will dramatically

simplify a developer’s life. Early in my career, most companies that I worked for simply

checked basic functionality and hoped for the best. As I grew as an engineer, I realized

how important not just full testing is but also automated testing. Early on, there were

quite a few projects I inherited where even minor changes to the code base would break

something somewhere in the code.

When something broke, there was no way to truly test the system to make sure that

everything was still working. Weeks or months later we would discover a bug that, after

tremendous effort, was traced back to a minor change. (Tracing back to the change

was only possible because I had forced these companies to start using revision-control

systems). I can’t stress enough how important testing and automated testing is to

software that will be reused and ported to multiple products and platforms.

�Step #7: Repeat for the Next Peripheral
At this point, the reader has seen several different examples of how this process can

be followed to develop a HAL for internal and external peripherals. If the reader were

developing their own HAL, they would now select their next-highest-priority peripheral

and begin the process all over again.

Don’t forget that the HAL will not be perfect on the first iteration. Undoubtedly, there

will be adjustments as new parts are integrated and as products evolve. Don’t worry

about getting it perfect the first time through.

So far, we have looked at how we can create a base HAL for different devices. Let’s

now look at how we can extend a HAL using the EEPROM device as an example.

�Extending the EEPROM HAL
So far in this book, we have discussed the fact that we can extend a HAL for custom

features on a peripheral or device, but we have never examined one! Extending the HAL

is not difficult, but it is still a good idea to see how it can be done. In this section, that is

exactly what we are going do.

Chapter 9 HAL Design for EEPROM and Memory Devices

238

Going back to Table 9-1, there are several custom features that do not belong in the

primary HAL. These features include the following:

•	 Erase modes

•	 Reading chip identification

•	 Low-power modes

While these are all useful features that a developer probably wants to implement,

they are not supported in every device. They are instead a manufacturer’s custom

implementation designed to differentiate their product from the competition.

A developer would add a separate module that would handle these customizations.

The module name could be anything, but the following are a few suggestions:

•	 hal_device_ext

•	 device_ext

•	 device_hal_ext

As the reader can see, my personal preference is to indicate in some way that the

HAL is an extension. Some HALs include the word hal in their naming conventions, but

I typically do not do this. My preference is to specify the device with the assumption that

the device module contains the HAL functions to control the device. If a developer were

working with the 25AA1024, they would end up with the following files:

•	 eeprom_25aaxxxx.h

•	 eeprom_25aaxxxx.c

•	 eeprom_25aaxxxx _ext.h

•	 eeprom_25aaxxxx _ext.c

•	 eeprom_25aaxxxx _cfg.h

•	 eeprom_25aaxxxx _cfg.c

Everything required to use a 25AA device would be included in these files. Notice

that in this example I am putting EEPROM in front of the part number. I do this because

without it a developer could easily get confused as to the purpose or function that part

number is associated with. They may find themselves wasting time trying to remember

which of these ten different part numbers was EEPROM.

Chapter 9 HAL Design for EEPROM and Memory Devices

239

The HAL extension functions will vary depending on the extra features that are

available on the device. For example, Figure 9-4 shows several new HAL functions that

are added to the EEPROM module through the _ext file.

Figure 9-4.  Extending the EEPROM HAL

Figure 9-5.  Example EepromErase_t for the extended HAL

The HAL extensions may require additional type definitions in order to constrain

and define the possible parameters that can be used to control the interface. Earlier, we

discussed how in my earliest HALs I had a separate function for every erase function on

the EEPROM device. Having multiple functions to control this behavior can complicate

the interface and make readability and maintainability worse. For that reason, a single

function that is then controlled by the parameter is preferred. Figure 9-5 shows an

example enumeration that would be used to control the erase functions on an EEPROM

chip. Keep in mind that this is specific to a single chip since most EEPROM devices do

not require a mass erase function.

As you can see, extending an interface isn’t complicated. Extending an interface is

just adding additional functionality to an existing HAL. In many instances, the extension

implementation will use the base HAL’s RegisterWrite and RegisterRead functions to

access the device’s registers. In this way, the extension is dependent upon the base HAL

in the implementation. This is not required, but it can simplify the implementation.

Chapter 9 HAL Design for EEPROM and Memory Devices

240

�Going Further
Developing a HAL for an external device such as an EEPROM device is no different

than creating a HAL for an internal device. The implementation will require accessing

a communication peripheral such as I2C or SPI, but the HAL design is the same. Now is

a great time to apply these techniques yourself. The following are some ideas of how a

developer can take the concepts discussed in this chapter and immediately apply them

their own development cycle.

•	 Identify at least three EEPROM devices that you are interested in

working with. Collect the datasheets and begin following the seven

HAL design steps that we have been discussing. If you want to make

things interesting, select devices in the following categories:

•	 three external EEPROM and at least one microcontroller with

internal EEPROM

•	 three external Flash devices and at least three microcontrollers

that have internal flash controllers

•	 Review the datasheets in detail and generate a peripheral feature list

like the one shown in Table 9-1. How do the results compare? Are

they the same or do they have new peripheral features beyond what

we discussed in this chapter?

•	 Review the table and identify the features that belong in a standard

HAL interface. Create an initial HAL interface list and identify the

input and output features for the interfaces.

•	 Create a documented template using the skills learned in Chapter 5

on Doxygen and create the EEPROM and flash stubs. An alternative

to creating the template yourself is to visit www.beningo.com and

purchase the templates developed by Jacob Beningo.

•	 Identify the development board that the first port will be performed

on. Use the examples in this chapter to fill in the implementation for

the target.

Chapter 9 HAL Design for EEPROM and Memory Devices

http://www.beningo.com/

241

•	 Develop basic test cases based on the configuration table and HAL

input and output features. Verify that the ported code behaves as

expected.

•	 Consider developing test-case document templates that will be used

to test ported EEPROM and flash code.

•	 Create automated test cases that can be executed daily to verify that

the HAL is working as expected. Don’t forget to inject errors to verify

that the regression tests are correct.

Chapter 9 HAL Design for EEPROM and Memory Devices

243
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_10

CHAPTER 10

API Design for Embedded
Applications

“. . . the purpose of abstraction is not to be vague, but to create a new seman-
tic level in which one can be absolutely precise.”

—Edsger W. Dijkstra, The Humble Programmer

�Applications Made Easier
Having a well-defined hardware abstraction layer can go a long way in improving

firmware reusability. Abstracting out the hardware layer is not the only abstraction layer

available to embedded-software developers. Developers can also make use of APIs,

which will provide high-level abstractions within the application code and can have just

as dramatic an effect on code reusability and the overall development cycle as HALs can.

For all intents and purposes, an API is really just a HAL that doesn’t touch any hardware.

It’s meant to provide a developer with an abstraction that can be used to simplify and

speed up application implementation.

APIs make implementing application software easier and faster. A developer that

needs access to an SD card library doesn’t need to write from scratch the code necessary

to interact with one. They can use a library that contains a well-defined set of APIs that

can then perform the necessary operations of the communication channel and talk with

244

the SD card to get the desired result. APIs provide developers with several advantages,

such as the following:

•	 Creates a black box that performs the desired operation with little to

no knowledge of how it does it

•	 Increases and improves reusability

•	 Speeds up development

•	 Improves code readability

Creating and using APIs for embedded software in today’s environment really is a

no-brainer. Developers should be creating APIs to produce more modular and reusable

code. The benefits have been proven time and time again. However, as developers go

about creating their APIs, there are several disadvantages that should be kept in mind.

These include the following:

•	 Each API level will have a minor performance hit when storing the

function return address on the stack unless the functions are in-lined

by the compiler.

•	 Libraries from third-party sources could have hidden issues related to

security, performance, code size, and robustness. Developers should

carefully study the code that they are using and analyze it.

SOFTWARE TERMINOLOGY

An application framework is a collection of different components, a set of APIs, that are

interrelated and assist a developer in rapidly developing an application.

In most cases, the benefits far outweigh the disadvantages, and if developers are

aware of the disadvantages, they can mitigate any potential issues that might arise

from them.

Chapter 10 API Design for Embedded Applications

245

�Designing APIs
Creating an API for an embedded application is not much different than the process

that we have been using throughout this book to create a HAL. The major differences

are that we are working at a higher abstraction level, removed from the hardware.

This makes life easier on the developer. We no longer need to compare datasheets for

multiple microcontroller devices and carefully craft an interface that supports them all.

The same process used to design a HAL can be used to make an API, with a few minor

modifications. The modified process for designing an API is as follows:

	 1)	 Identify the features and operations that the API will perform.

	 2)	 Design and create the API.

	 3)	 Create the stubs and documentation templates.

	 4)	 Implement the API.

	 5)	 Test the implementation.

That’s it! The process is shortened by two steps since we don’t have to review a bunch

of datasheets. The nice part about the API level is that we implement once and only need

to maintain the interface. The APIs should be usable across platforms, and only HAL

dependencies would ever need to be updated.

Every best practice that we have discussed related to HALs in this book also applies

to the API level. For example, developers should try to keep their APIs manageable and

limited to no more than a dozen per component. A developer should break up and

organize their component so that it contains four different modules, as follows:

•	 The component header definition file

•	 The component source implementation file

•	 The component configuration header file

•	 The component configuration source file

Keeping a component organized in this fashion will help maximize reuse and will

also help keep the APIs associated with it organized and easily navigable.

Chapter 10 API Design for Embedded Applications

246

�Application Frameworks
An application framework is a collection of different components, or set of APIs, that

are interrelated and assist a developer in rapidly developing an application. Application

frameworks have been around for PC developers for decades, but embedded-software

developers really haven’t had application frameworks available to them until recently.

The reason why is that embedded developers only focused on one-off applications and

had no reason to create reusable code and application frameworks to help them speed

up development.

Developers have started to move to 32-bit ARM-based microcontrollers. With this

transition, the hardware has become so complicated that microcontroller manufacturers

such as Microchip, Renesas, and ST Microelectronics have started to develop application

frameworks for their parts. Application frameworks help their customers speed up

development and abstract out the hardware. Developers therefore don’t need to become

experts on every register in the microcontroller and how each works. These frameworks

include not only a HAL but often high-level APIs to implement features such as SD card,

RTOS, command consoles, and much more. An example application framework from

Renesas can be found in Figure 10-1. Notice how it includes everything from the board

support package and HAL to several different application-level functions.

When you are thinking about creating your own APIs and collecting them into a

framework, take some time to review what has already been done in the industry. You

might find that you are able to use something that already exists or at least leverage the

best practices from other teams that have already made progress in developing useful

reusable firmware.

Chapter 10 API Design for Embedded Applications

247

�Creating Your Own APIs
Now that we have examined some general APIs and how they can be used with an

embedded system, it’s time to start carefully considering what the reader should be

doing to create their own APIs. We don’t necessarily need to create the perfect solution

or convert every piece of code we write into a masterpiece for reusable software. A

developer needs to reasonably identify the core application components that offer the

greatest benefit to being reused in multiple applications. There are several questions

that a developer should ask themselves as they consider whether a feature should be

designed so that it can be reused. These include:

•	 Is this component going to be used in more than one application?

•	 Will this component be ported to another hardware platform in the

future?

Figure 10-1.  Renesas Synergy™ Software Application Framework1

1�https://www.renesas.com/en-us/products/synergy/features.html

Chapter 10 API Design for Embedded Applications

https://www.renesas.com/en-us/products/synergy/features.html

248

•	 Will there be a long-term benefit to writing this component so that it

is reusable?

•	 Is there available time and budget to write this code in a reusable

manner right now?

If the answer to most of these questions is “yes,” then the component should

probably be written to have a nice API so that it can be easily reused. The real question

in many developers’ minds might be what embedded-software components lend

themselves to being reused and are deserving of the time and attention required to

create a robust API around them?

For every team, the answer will be dependent upon their end application and

their core intellectual property. However, there are several general examples that are

necessary in almost every embedded application that we can use as a starting point to

provide an example for how a developer should design and create their own APIs.2 The

examples that I am about to provide are major components in an embedded system that

can be reused. Undoubtedly, you will find that there are many more smaller components.

�Common Software Frameworks—RTOS
and Schedulers
An obvious component that is present in every embedded system is a scheduler. The

scheduler might be a simple cooperative scheduler or it very well might be a full-blown

RTOS. As fun as creating an RTOS might be, scheduling algorithms have been beaten to

death, and there is no reason to professionally develop yet another RTOS or scheduling

algorithm. Since most systems have some scheduling element to them, an RTOS is a

perfect example of a reusable component that can be ported to multiple applications

and platforms.

The obvious challenge with an RTOS is its API. There is no standard! Every developer

and their brother who has written their own RTOS has a completely different API than

everyone else. This can create a huge issue for reuse if a development team might

possibly swap out RTOSes in the future or wants that component to be modular. In an

2�http://www.webopedia.com/TERM/L/library.html

Chapter 10 API Design for Embedded Applications

http://www.webopedia.com/TERM/L/library.html

249

earlier chapter, we discussed how a developer might need to create a wrapper layer in

their software so that an RTOS can easily be swapped in and out. The wrapper layer,

shown in Figure 10-2, provides a well-known interface through which to access the

features available in any RTOS and allows the RTOS to easily be swapped out.

Using a wrapper for the RTOS layer has immediate advantages, such as the following:

•	 Swapping out the RTOS

•	 Consistent application interface for any scheduler

•	 Being highly portable

The only real downside to having a wrapper layer around the RTOS is that there is a

slight performance hit due to making a function call to get into the wrapper, which then

must call the associated RTOS function. This disadvantage can be overcome by function

in-lining and enabling compiler optimizations.

HAL

RTOS

RTOS Wrapper

Application

Other Component Layers

Figure 10-2.  RTOS wrapper layer

Using a wrapper to allow any RTOS to be used in an application is interesting,

but does anyone in the industry actually do this? Besides an engineering firm that is

scattered here or there, one major player that does use an RTOS wrapper is Microchip.

Microchip has its MPLAB® Harmony software, which “adds in the flexibility to use a

Real-Time Operating System (RTOS) or work without one.”3 They have literally designed

an RTOS wrapper that allows RTOSes such as

•	 ThreadX;

•	 FreeRTOS;

•	 Micrium OS2 or 3;

3�http://www.microchip.com/mplab/mplab-harmony

Chapter 10 API Design for Embedded Applications

http://www.microchip.com/mplab/mplab-harmony

250

to be swapped into and out of their software platform. The application code makes calls

to the same API calls, but the API is populated with the specific RTOS feature’s API call.

That is definitely something that a developer who is working on a reusable software

framework or trying to maximize firmware reuse should take into consideration.

CASE STUDY—YET ANOTHER RTOS

Embedded-software developers love to get down into the bits and bytes and work at the

hardware level. Real-time developers especially take pride in being able to fine-tune and

control not just the hardware but also the deterministic timed behavior of the system. These

developers have always loved to write scheduling algorithms. The problem with writing your

own scheduler or RTOS is that it has been done a million times by a million engineers.

There are currently over a hundred different real-time operating systems and scheduling

algorithms commercially available. Designing and getting a basic scheduler up and running

isn’t a big deal, but creating one that is robust and correct all the time and that is designed

under a certified development cycle starts to push the time and budgetary constraints

available on projects today.

The advice I can give is to use a proven scheduling algorithm and only write your own on your

own free time if it is something that you are passionate about. Writing a scheduler can provide

great insights into how a real-time scheduler works. Examining and modifying one that already

exists can be far more efficient, however, and you can learn just as much.

�Common Software Frameworks— Console
Applications
Console applications are a core component that is included in many embedded

applications. The console application has its printf functionality, which can help a

developer see the code’s status, but far more important is the command-handling piece.

Embedded systems often accept commands externally, whether they are from a host PC

or a device located through a network across the world.

Chapter 10 API Design for Embedded Applications

251

The components required to implement a console application are standard.

A developer needs a communication interface such as a UART or USB that is connected

to a command parsing and response module. This is standard, and it makes a lot of

sense to package these components in such a way that they can be reused and integrated

in a single framework. Figure 10-3 shows an example stack-up. In the example, the

communication interface is a generic interface that is shared among all communication

devices. The input module contains the command parser, which would be configurable

for the application.

HAL

Communication Interface

Console Output

Console Application

Console Input

Figure 10-3.  Software layer stack-up for a console application

The Renesas Synergy Platform does something very similar to this. While their

platform offers a wide variety of components, one component that I have found to

be very useful is their console-application module. This module can be added to any

Synergy project and be connected to USB, a UART, or any communication channel that

is available on the microcontroller! Once in the project, a developer creates a command

list and the function that should be executed if the command is received.

These components aren’t just reusable; they also drastically decrease the time required

to create a console feature on an embedded system. Once again, why reinvent the wheel

when one already exists? It’s far better to instead invent something that builds upon it!

CASE STUDY—COMMAND PARSERS

Since so many systems have a need to transmit a command, after the third or fourth time

having to implement one, I designed a configurable and reusable command parser that

became a necessary element in my bag of tricks. The parser I designed contains several

elements:

•	 An enum that defines available commands

•	 A function for each command

Chapter 10 API Design for Embedded Applications

252

•	 A configuration table that lists each available command and has a function pointer

to the command function

•	 A search algorithm that can find the matching command and execute the

associated function

This may seem complicated, but I’ve found that once a switch statement grows to more than

a dozen or so cases, it becomes difficult to manage and maintain. I’ve worked on applications

that had hundreds of commands and have seen this implemented in a massive, nearly

unsearchable switch statement.

Using a command parser with the elements I just described can improve

•	 readability;

•	 maintainability; and

•	 portability.

The best part is that it is simple to copy the template into a new application, list the new

commands, and in a few minutes have a command parser up and running in the system.

�Common Software Frameworks—Bootloaders
One of my all-time favorite frameworks is the bootloader framework that I put together

and have been using on my own projects and my clients’ projects for the last half a

decade or so. The ability to update firmware in the field is so important, and yet it’s

usually the last software piece that any development team thinks to add to their system.

This leaves developers scrambling at the end of a project to add firmware update

capabilities to their system.

I quickly found that the problem my clients were facing was multi-fold and included

the following:

•	 They didn’t know how to write a bootloader.

•	 Microcontroller-vendor bootloaders were example code and did not

meet production software requirements.

•	 The time required to learn, build, and debug a bootloader on average

was three months.

•	 Developing a solution in-house could easily cost a company $40,000

to $60,000 depending on the requirements.

Chapter 10 API Design for Embedded Applications

253

These were big problems for the clients, especially the timing and robustness

requirements. So, how do you solve a problem that is common to nearly every

embedded system and can be time-consuming to build? You create a reusable firmware

framework that can be ported to multiple hardware platforms!

That is exactly what I did. I took many of the lessons and discussions that we have

had in this book and applied them to creating a software framework that could be used to

easily adapt bootloaders to any microcontroller. The framework was not done in a single

shot, but rather started out with basic capabilities and APIs and then, over the course

of a half-dozen or so bootloaders, took full shape. This required creating low-level HAL

drivers and higher-level APIs. The basic, simplified results can be seen in Figure 10-4.

Communication
Interface

Bootloader Application

Memory
Interface

Scheduling
Interface

Watchdog
Interface

Drivers

HA
L

Figure 10-4.  Beningo Microcontroller Bootloader Solution (Micro-boot, MCU-
Boot)

Every bootloader requires access to a communication interface, whether it’s an SD

card, UART, USB, I2C, and so on. The bootloader must access memory in some way. At a

minimum, it needs to access the internal flash controller, but it may also need to access a

file system or an external EEPROM device. Bootloaders may require scheduling or basic

timing in order to detect if an operation has timed out. There is so much more associated

with a bootloader, but I think the reader gets the idea.

The big question is: how has such a framework helped? The very first bootloader

I ever wrote took three months of calendar time and approximately eight weeks of

active development time. (When you take on an activity like this internally, regular

development must continue, so it is never just the straight workload). The second

bootloader, now that I had experience under my belt, still took six to eight weeks’

development time.

After the second bootloader experience, I realized that I was probably going to be

creating these throughout my career and should think about designing one that I could

reuse and port to different applications. I designed a first-pass framework, and the

third bootloader I wrote took less than four weeks. Adjustments to the framework were

Chapter 10 API Design for Embedded Applications

254

made, additional features were added, and the next one took two weeks. With time and

a reusable framework, bootloader implementation has become extremely easy and fast.

Table 10-1 shows the progression and the effect that the bootloader framework had on

the development activity. Obviously, the development effort has greatly benefited from

the availability of a reusable framework.

Table 10-1.  Bootloader Development Times and Estimated Costs

Bootloader

Iteration

Framework

Available?

Estimated Dev.

Time Comments

1 No 8 Weeks

2 No 8 Weeks

3 Yes 4 Weeks Framework 0.5

4 Yes 3 Weeks Framework 0.8

5 Yes 2 Weeks Framework 1.0

6 Yes 2 Weeks Framework 1.1

7 Yes 2 Weeks Framework 1.2

After examining the data, keep in mind that this is the time necessary to get the

bootloader up and running. Integrating a user application and updating it to work with

the bootloader can sometimes be considerable work, depending on how they designed

their application and the tools that they used.

�Common Software Frameworks—FAT File System
Another component that a developer can leverage and that they probably wouldn’t want

to create themselves is a FAT file-system component. FAT file systems are often used on

embedded systems to store log data or files on either an SD card, an external memory

device, or sometimes even on internal flash memory. There are many different FAT

file-system components available if one does a quick internet search. One particular

component that has gained traction and a big following in the embedded space is FatFS.4

4�http://elm-chan.org/fsw/ff/00index_e.html

Chapter 10 API Design for Embedded Applications

http://elm-chan.org/fsw/ff/00index_e.html

255

FatFs has a great API set. The APIs are all easy to remember and very simple. A short

listing can be seen in Listing 10-1. You might notice that all the APIs start with the same

prefix so as to identify that it is a file API, and then the function immediately follows. The

API is clean and easy to read and remember. One could complain that there are more

than a dozen functions in the API, but the APIs are so simple and straightforward that

it wouldn’t make any sense to reduce their number! The dozen functions are a rule of

thumb, not a law.

Listing 10-1.  FatFs File Access API’s4

f_open - Open/create a file

f_close - Close an open file

f_read - Read data from the file

f_write - Write data to the file

f_lseek - Move read/write pointer, expand size

f_truncate - Truncate file size

f_sync - Flush cached data

f_forward - Forward data to the stream

f_expand - Allocate a contiguous block to the file

f_gets - Read a string

f_putc - Write a character

f_puts - Write a string

f_printf - Write a formatted string

f_tell - Get current read/write pointer

f_eof - Test for end-of-file

f_size - Get size

f_error - Test for an error

What is great about FatFs is that even the file organization is clean and has been well

thought out. The framework is layered so that a developer only needs to provide some

low-level access into the hardware, and the higher-level API calls will function on the

hardware as expected. This is a great example of how to architect software that has a

clean API and is modular enough to be used on multiple platforms.

Open source software, though, doesn’t always have the greatest implementation.

A quick analysis shows that there are many functions with a cyclomatic complexity

greater than 10. In fact, there are several with values greater than 20, and even a few in

the 30s and 40s. These functions obviously have probably never been fully tested and

Chapter 10 API Design for Embedded Applications

256

could potentially be harboring unknown bugs just waiting to strike. That doesn’t stop

engineers from using them. In all honesty, I’ve never had any obvious issues that I’ve

found when I use them, but still, “buyer” beware.

�Going Further
APIs are the foundation that most modern software is built upon. They nicely abstract out

and hide the implementation details, allowing developers to focus on their application

rather than on common software features. The following are several thoughts on where

you can go from here to improve and get up to speed on creating your own APIs:

•	 Review the best practices for HALs. These best practices also

apply to APIs.

•	 Go online and review some common open source software. Evaluate

how well that software provides the following:

•	 Appropriate APIs

•	 Software architecture

•	 Speed that support is provided for

•	 Software-development process

•	 Testing procedures

•	 Review the APIs from different RTOS suppliers. Which APIs seem to

be the easiest to use and remember?

•	 Review your own software and identify common software features

that could easily be converted into their own separate reusable

software governed by a simple set of APIs.

•	 Implement those features as a reusable component and start building

your own libraries and frameworks.

•	 Examine the software components that are open source and

microcontroller-vendor-specific that we discussed in this chapter.

Then do the following:

•	 Identify the best practices used in each.

•	 Determine what could be done better.

Chapter 10 API Design for Embedded Applications

257
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_11

CHAPTER 11

Testing Portable
Embedded Software

“Program testing can be used to show the presence of bugs, but never to
show their absence!”

—Edsger W. Dijkstra

“Defect-free software does not exist.”

—Wietse Venema

�Cross Your Fingers and Pray
Testing an embedded system is critical to ensure that it not only meets requirements but

also has a minimum bug count. Developers can rarely prove that their application has

no bugs in it, but they can develop extensive test cases that minimize the chances that a

bug is hiding in their application. Testing strategies can vary from manual system-level

testing to sophisticated automated tests that are performed on a continuous-integration

server and reported on a nightly basis.

SOFTWARE TERMINOLOGY

Regression testing is the ability to automatically run test cases that were previously executed

to verify that they still pass after the software has been modified.

258

The worst testing strategy that a development team can have, and unfortunately one

that I have seen implemented on numerous occasions, is the “cross your fingers and pray”

strategy. In this implementation, developers spot-check their code and the system to make

sure that they don’t notice any major system defects. The spot-checking has minimal code

coverage and is a highly manual procedure. When the product ships, developers mostly

just cross their fingers and pray that they don’t run into any major issues.

In order to have a consistent test strategy, developers need two key features in their

tests: automation and regression. Automated tests are necessary because there is no way

that a developer or a team can dedicate the time and effort necessary to manually check

that every line of code is executed and behaves as expected. The only way to perform

these checks is to automate testing so that it can be executed without human interaction.

Once tests are automated, developers can employ regression testing, which is

the ability to rerun tests that were previously executed to verify that they still pass.

Regression testing is an amazing tool that, if executed periodically, can show developers

where feature additions or changes in the code base may have broken the application

code. Debugging is far more efficient if a developer can be alerted immediately when the

problem arises in the system rather than weeks or months later.

Development teams that want to reuse their firmware and port it from one hardware

platform to the next need the ability to automatically test that their ported code is

working as expected—without requiring significant time. To do so, there are several key

test areas that need to be developed, as follows:

•	 Unit tests

•	 Functional tests

•	 Regression tests

•	 Integration tests

In this chapter, we will review best practices and considerations that developers

should look at when developing a test strategy for their reusable firmware.

�Unit Testing
The most basic testing that every developer should be performing on their embedded

systems is unit testing. Unit testing is a software-development process in which the

smallest testable parts of an application are individually and independently scrutinized

Chapter 11 Testing Portable Embedded Software

259

for proper operation.1 For firmware engineers, a unit is an individual function. As

engineers develop their functions, they should also be developing test cases that will

validate the functions work as expected.

A unit test should test the function by validating that the range of possible inputs to

the function produce known and expected outputs. Unit tests should also include inputs

that are known to be invalid to ensure that the function can handle errors appropriately.

Figure 11-1 shows at a high level how a function would be tested.

Function Under TestInputs

Test Harness Loop

Outputs Test Report

Figure 11-1.  A test harness running unit tests

First, a test harness would be set up that could automatically run the function under

all the input conditions that are required to test the function. Next, these inputs should

allow the function to follow all possible branches through the function, which can be

seen as the connected circles in the “Function Under Test” block. We will discuss how

we can ensure we have the minimum number of test cases required in the next section.

Finally, the function will produce an output that results in the work that it performed,

which can then be recorded in a test report.

SOFTWARE TERMINOLOGY

Unit testing is a software-development process in which the smallest testable parts of an

application are individually and independently scrutinized for proper operation.1

1�http://searchsoftwarequality.techtarget.com/definition/unit-testing

Chapter 11 Testing Portable Embedded Software

http://searchsoftwarequality.techtarget.com/definition/unit-testing

260

Unit tests can be performed manually, but they are far more effective if they can be

automated. Running any test case manually is a very time-consuming process. Always

try to find a way to automate the process. I don’t enjoy spending my time testing or

debugging, so the more automated these processes are, the better!

Embedded-software developers often struggle with determining the correct number

of test cases that they should have in order to fully test a function. Developers can easily

define the inputs to enter a function, but they also need to make sure that every line

of code is executed and that every code branch is traversed. Thankfully, there is a tool

developers can utilize that will save them from having to manually determine how many

test cases they need to create. That tool is cyclomatic complexity.

�Taking Advantage of Cyclomatic Complexity for Unit
Testing
Cyclomatic complexity is probably one of my favorite topics to discuss because it has

so many benefits for embedded-software developers. The first benefit, which we have

already discussed, is that cyclomatic complexity can be used to minimize function

complexity. The cyclomatic complexity measurement results in a finite number that is

assigned to a function and sets the reliability risk for bugs and testing. Table 11-1 shows a

basic summary of the various complexity measurements and the software’s reliability risk.

Table 11-1.  Cyclomatic Complexity Effect

on Reliability Risk2

Complexity Reliability Risk

1 – 10 A simple function, little risk

11 – 20 More complex, moderate risk

21 – 50 Complex, high risk

51+ Untestable, very high risk

2�McCabe, Thomas Jr. “Software Quality Metrics to Identify Risk.” Presentation to the Department
of Homeland Security Software Assurance Working Group, 2008. (http://www.mccabe.com/ppt/
SoftwareQualityMetricsToIdentifyRisk.ppt#36); and Laird, Linda, and M. Carol Brennan
(2006). Software Measurement and Estimation: A Practical Approach. Los Alamitos, CA: IEEE
Computer Society.

Chapter 11 Testing Portable Embedded Software

http://www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt#36
http://www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt#36

261

The second benefit that developers can leverage from the cyclomatic complexity

measurement is that it provides a value for the minimum number of test cases that need

to be defined and executed in order to fully test a function. This is because cyclomatic

complexity measures the number of linearly independent paths through the function.

A linearly independent path is any path through a program that introduces at least one

new edge that is not included in any other linearly independent path.3 Let’s look at a few

quick examples.

The first example will be a function that takes two parameters and contains a simple

if/else statement. The code can be seen in Listing 11-1. In this example, we have two

linearly independent paths. The first path is where var1 is equal to var2. The second

path is if var1 and var2 are not equal. Using the M-squared RSM tool on this code, the

cyclomatic complexity result is two, which is what we would expect. We have two linearly

independent paths through the function.

In this example, we know that we should have two test cases to ensure that each

linearly independent path gets tested. A developer would also want to test the possible

values for var1 and var2 if it would impact the behavior of the function. There would be

no point in testing every possible combination if it would not impact how the function

behaves.

Listing 11-1.  Function with a Cyclomatic Complexity Equal to 2

int MyFunction(int var1, int var2)

{

 if(var1 == var2)

 {

 var1++;

 }

 else

 {

 var2++;

 }

}

3�http://www.ironiacorp.com/

Chapter 11 Testing Portable Embedded Software

http://www.ironiacorp.com/apps/wiki/testing/Linearly_independent_path

262

An interesting example is one where a developer has two if/else statements that

occur one after the other. Each if/else statement calls a function. The code can be seen

in Listing 11-2. If a developer were counting possible paths through the code, they would

notice the following function combinations would be executed and count the following:

	 1)	 Foo() Bar()

	 2)	 Foo() Code()

	 3)	 Dead() Bar()

	 4)	 Dead() Code()

What is interesting is that the cyclomatic complexity measurement is three for this

function despite there being four possible paths! Was the cyclomatic complexity wrong?

No, it wasn’t! Cyclomatic complexity measures linearly independent paths. The last path

is not linearly independent of the first three paths because it does not introduce any new

nodes (program statements) that were not included in the first three paths.4 This is a

great example of how cyclomatic complexity provides the minimum number and not the

actual number of test cases required to test a function.

Listing 11-2.  Cyclomatic Complexity, Three Functions with Four Paths

int MyFunction(int var1, int var2)

{

 if(var1)

 {

 Foo();

 }

 else

 {

 Dead();

 }

 if(var2)

 {

 Bar();

 }

4�https://stackoverflow.com/questions/24191174/cyclomatic-complexity-1-if-statements

Chapter 11 Testing Portable Embedded Software

https://stackoverflow.com/questions/24191174/cyclomatic-complexity-1-if-statements

263

 else

 {

 Code();

 }

}

There are several different tools that developers can use to measure cyclomatic

complexity. A few that I have used in the past include the following:

•	 GMetrics5

•	 M-squared’s RSM6

•	 LDRA7

•	 Visual Studio IDE (built-in)

•	 Understand IDE (built-in)

�Standard Interface . . . Standard Tests
The nice thing about reusable software is that once unit tests are developed for the HALs

and the APIs, the tests can also be reused. A carefully crafted HAL becomes a standard

interface that is used from one application to the next. That standard interface will

then have standard tests associated with it that can always be run to make sure that any

ported or reused code still behaves the way it is expected to on the new system.

A developer can easily see the advantages of having a standard test suite that is

executed on their drivers and their application code. These include:

•	 Writing the test once

•	 Reusing the tests for years or possibly a decade or more

•	 Quick and easy verification of changes to the software

•	 Speedy verification of new ports

•	 Decreased costs

5�http://gmetrics.sourceforge.net/gmetrics-CyclomaticComplexityMetric.html
6�https://msquaredtechnologies.com/
7�http://www.ldra.com/en/

Chapter 11 Testing Portable Embedded Software

http://gmetrics.sourceforge.net/gmetrics-CyclomaticComplexityMetric.html
https://msquaredtechnologies.com/
http://www.ldra.com/en/

264

There are also several disadvantages that developers need to be aware of concerning

standard tests. These concerns include:

•	 A hole in the tests will be propagated to all software that follows.

•	 The upfront time necessary to design and implement the tests

•	 The potential cost to purchase tools and implement the tests

The advantages of using standard tests obviously outweigh the disadvantages.

Developers can easily mitigate the disadvantages by

•	 periodically reviewing the standard tests to make sure that they still

completely cover the code;

•	 updating the tests as the underlying APIs change; and

•	 performing periodic test reviews internally and with a third party to

make sure that nothing has been overlooked.

By doing these three things, developers can make sure that they always have

standard tests that can be executed on their standard APIs.

�Functional Testing
Functional testing is a testing process that is used to verify that the software conforms

with all its requirements.8 In most instances, it’s a testing method that is used to verify

that the business needs or the end-user needs are being met. Functional testing is

most often executed at the application level to verify that the end users’ inputs provide

expected outputs.

Functional testing often follows black-box or white-box testing methods. In black-

box testing, the tests are created with little to no knowledge of how the system’s inner

workings were created. The test simply knows that pressing button A should result in

output A.

When the developer who designed the system gets involved in creating the tests, the

testing is known as white-box testing. Since the developer has intricate knowledge of the

inner workings of the device, they can devise tests that not only verify the inputs/outputs

for the system but also test corner cases and specific internal actions.

8�Grenning, James (2011). Test-Driven Development for Embedded C, The Pragmatic Programmers.

Chapter 11 Testing Portable Embedded Software

265

Functional testing can go beyond simply verifying the inputs and outputs

for the system. They can also include unit testing. For embedded developers, we

have an interesting problem in that most of our code touches hardware. Registers

get manipulated that affect the output on a physical pin. There can be multiple

configurations, and it can be difficult and time consuming to verify that all the

combinations are correct and function as expected. This is where two different tools

come into play to help embedded-systems developers: test-driven development and

hardware in-loop testing.

�Test-Driven Development
In James Grenning’s book Test-Driven Development for Embedded C, he defines test-

driven development as “a technique for building software incrementally where no

production code is written without first writing a failing unit test.”8,9 The idea behind

TDD is that a developer first writes their test case, makes it fail, and then writes the code

necessary to make the test case pass. Once the test case passes, they write another test

case that fails, and then they write the code that resolves that test case. It then continues

in this manner until the entire software is completed.

There are several obvious advantages to using TDD, including the following:

•	 It is verified that every test case can detect a failed state.

•	 Test cases are created incrementally for every piece of code that is

written.

•	 Adding new code that breaks previously written code is immediately

detected.

•	 A test harness is used that allows for easy regression testing.

When one considers the advantages of thinking through the tests first and then

writing the code, it’s quite brilliant and counterintuitive to the way that embedded-

software developers write software, so much so that if you read the book and try it out,

you may find yourself struggling to accept a TDD mindset.

9�https://www.techopedia.com/definition/19509/functional-testing

Chapter 11 Testing Portable Embedded Software

https://www.techopedia.com/definition/19509/functional-testing

266

TDD is not without its own headaches and issues. There are several disadvantages to

TDD that can affect embedded-software developers, such as the following:

•	 Needing to create mocks to simulate hardware accesses

•	 Setting up the development environment is time-consuming and

tricky

•	 Adopting the mindset and truly following TDD is difficult

•	 The process can feel very time-consuming

Despite these disadvantages, developers may still want to investigate TDD and

determine which pieces could work best for their reusable firmware.

�Hardware In-Loop Testing
Hardware in-loop (HIL) testing runs the test case code on the target microcontroller

rather than using a mocked software layer to act as the hardware. HIL testing can

be extremely useful for verifying that hardware accesses from a HAL are working

as expected and even for testing that all outputs from the system work as expected.

Figure 11-2 shows an example of what a HIL setup might look like.

Host PC

Debugger
Microcontroller

Logic
Analyzer

DAC / ADC
Product Specific

Hardware

Device Under Test

Comms

Figure 11-2.  Hardware in-loop testing

Chapter 11 Testing Portable Embedded Software

267

HIL testing can contain several different components. First, there is the device under

test, which is commonly referred to as the DUT. The DUT will have information that it is

critical to access in order to verify the system is working, such as the following:

•	 Microcontroller register values

•	 Pin I/O states

•	 Communication channels

•	 Product relates signals from sensors, actuators, etc.

Now, a developer could go through and manually monitor these signals, but that

would be a very time-consuming process. Instead, a developer can build out their HIL

test harness to include tools that can automatically sample desired states.

This brings us to our second component, the debugger. The debugger is used by the

test controller to load applications and test code onto the target microcontroller, and

also to control those tests through the debugger communications port. Most modern

debuggers act as a virtual communication port, and with minimal software a developer

can create a test command-control channel to manage the microcontroller. The

controller can request telemetry, register values, and even monitor the software trace

and event history.

Next, a developer will normally have a communication channel via which to talk with

the product. For example, if the product is an automotive product, there may be CAN

messages that the product responds to that need to be tested. Another example would be a

device that has a COMM port. Whatever the communication interface is, there needs to be a

tool that can convert that communication to a COMM port that the test scripts can control.

Another useful tool to include in the HIL, and one that is very useful for verifying the

HAL and configuration tables, is a logic analyzer. Each GPIO pin on the microcontroller

can be connected to the logic analyzer and then sampled at either a predetermined

rate or when events occur in the system. For low–pin count parts, this is straightforward

and doesn’t require expensive hardware. However, if the microcontroller being used

has a hundred pins or more, logic-analyzer hardware could be expensive. The same

processor’s development kit, which probably has a header for every pin anyway, can be

used as a logic analyzer with a little bit of software.

Developers may also find that their system requires an analog or digital input or that

their system outputs an analog or digital signal. In these cases, using an ADC or DAC will

give the test harness access to these signals so that they can be recorded while executing

the test cases.

Chapter 11 Testing Portable Embedded Software

268

Finally, this brings us to the host computer that runs the test suite and must monitor

and control the entire testing process. There are several different test harnesses from

companies such as LDRA, but it is also possible for developers to write their own Python

scripts to test and validate their system. In many cases, the direction a team will go will

depend upon several factors, such as the following:

•	 Available budget

•	 Available time

•	 Team members available for the project

The one thing that I’ve tried to convey throughout this book is that reusable software

saves time and money in the long run. It often does require more time and budget up

front, but once everything is in place, the speed at which a team can move and the

money that can be saved pays for itself multiple times over.

�Regression Testing
Developers who are creating reusable software absolutely need to make sure that

they can perform regression tests in a timely and automated manner. According to

Wikipedia, regression testing is “a type of software testing which verifies that software

which was previously developed and tested still performs the same way after it was

changed.”10 In summary, regression testing helps a developer ensure that when they

modify their software by fixing bugs, adding new features, or porting it to a new target

microcontroller, they can verify that the software behaves as expected without any new

bugs being created. If bugs have been created, the regression tests would catch them and

developers could deal with them.

The idea behind regression testing is that there is a test set that exists that can

be rerun on the system periodically to ensure that all the tests are still able to pass. If

regression testing is run often, any tests that fail should be easily traceable to the code

that changed and is causing the issue.

10�https://en.wikipedia.org/wiki/Regression_testing

Chapter 11 Testing Portable Embedded Software

https://en.wikipedia.org/wiki/Regression_testing

269

�Automating Tests
Any team or developer that is creating reusable software should be creating automated

tests. Even the simplest embedded system could require a hundred or more test cases to

ensure that the software behaves as expected. Attempting to manually run through these

tests will consume a lot of time and could be prone to errors. Therefore, automating test

cases is really the best solution for developers.

There are several different methods that teams can use to create automated test

cases. The most popular that I have encountered include

•	 using a C/C++ test harness; and

•	 creating a Python-based test harness.

There are several example C/C++ test harnesses that developers can leverage, such

as Unity or Cpputest. Both C/C++ test harnesses are open source and can be found by

searching for them in your favorite web browser. The advantages to using a C/C++ test

harness is that

•	 they are open source;

•	 developers already know C/C++; and

•	 they can be used to create automated tests.

There are several disadvantages as well, including the following:

•	 Being open source, there is limited support to get them up and

running.

•	 I have found that they are difficult to set up initially.

Python test harnesses can be very interesting to developers as an alternative to a

C/C++ harness. I have found them to be more flexible for system-level testing, similar to

what we discussed in the section on in-line hardware testing. Python is an easy-to-learn

scripting language that is very powerful. It also includes libraries specifically designed to

perform testing.

The direction that any team chooses to go will be highly dependent on their skillsets

and their end requirements. It may also depend on when their products are due and how

much time and budget they have allocated for testing. One thing is certain though; if you

are planning to create reusable firmware, you need to have automated tests to ensure the

software continues to behave as you expect it to.

Chapter 11 Testing Portable Embedded Software

270

�Using Trace to Verify Application Software
A new testing tool that is now available to embedded-software developers that wasn’t

available just a few years ago but can be very powerful is application tracing. Application

tracing allows a developer to record events that are occurring in their system and offload

the event and the timing through the debugger onto a host machine. Event data can

be logged by streaming continuously or as a one-shot. An example setup for how a

developer can trace their application can be found in Figure 11-3.

Host PC

Debugger

Target MCU
(Running Event Recording Library)

Visualization Software

Figure 11-3.  Tracing application data block diagram

In the setup, a developer runs a small and efficient event-recording library that can

communicate with the debugging probe to store the event data on a host PC. The sample

rate for the event data will depend on the throughput to the PC along with the buffer

size given to the event-recording library. The larger the buffer, the more event data that

can be stored locally before it needs to be transmitted upstream. Even on resource-

constrained microcontrollers, the event-tracing library uses no more than 1 percent of

the CPU and usually has a few kilobytes of RAM allocated to it.

Once a developer has set up tracing and recorded a trace to their PC, they can use

their capture software to get statistical information about the system. This information

can be viewed in many ways, from simple tables and graphs to task-tracing diagrams. An

example trace that monitored a system that had three tasks to control LEDs can be seen

in Figure 11-4. This table shows useful information, such as CPU usage and minimum,

maximum, and average execution times, along with the task periodicity. A developer can

easily use this information to monitor and track not only changes to their application but

also whether their code is behaving as expected after porting it to a new microcontroller

or product.

Chapter 11 Testing Portable Embedded Software

271

Another interesting feature that developers can use to test and verify their software is

a visual inspection of the trace data. Figure 11-5 shows an example visualization where

a developer has discovered that there is a deadlock in their application code. The active

task is shown as a solid lifeline, while the task waiting to execute is shown as a hashed

line. The highest-priority task is on the right-hand side. Examining the trace reveals

when different events occur, such as:

•	 Task delays

•	 Context switches

•	 Giving and taking objects such as semaphores

•	 Current status of all tasks

This information can be used to dramatically improve the verification process

involved with reusable firmware.

Figure 11-4.  Trace data demonstrating task statistics

Chapter 11 Testing Portable Embedded Software

272

�A Modern Example: The Renesas Synergy™
Platform
So far in this chapter we have examined quite a few different topics associated with

testing portable firmware. Before we conclude, I want to walk you through a real-world

example of how a microcontroller supplier is taking their software to the next level by

providing not just example code, but also certified, portable firmware that works on their

entire series of microcontrollers. This is a real-world example of how Renesas tests the

software that it provides with its Synergy microcontrollers.

The Renesas Synergy Platform provides a wide range of microcontrollers, from

low-power microcontrollers with an ARM Cortex-M0+ cores all the way through to

high-performance ARM Cortex-M4 cores. Rather than expecting its customers to write

their own drivers, middleware, and application code, Renesas has built into its platform

an entire software framework that provides these components in a configurable and

Figure 11-5.  Manually inspecting event data that reveals a deadlock

Chapter 11 Testing Portable Embedded Software

273

portable manner across the entire microcontroller family! What is so surprising is that

Renesas doesn’t just supply example code but has also gone through a rigorous software-

development cycle that has strict quality-assurance requirements that include many of

the testing methodologies that we have been discussing in this chapter.

For example, Figure 11-6 shows the general process that Renesas uses every single

night to test that its framework works as expected!

Figure 11-6.  Renesas Synergy™ Platform continuous integration test server11

The reader can easily see that the test setup is a combination of running tests both on

the software alone and on the hardware. By quickly surveying the diagram, a developer

can see that their software framework is the following:

•	 Statically analyzed

•	 Verified against best practices and coding standards

•	 Compiled under multiple toolchains

11�Renesas Synergy Software Quality Handbook, page 17.

Chapter 11 Testing Portable Embedded Software

274

•	 Tested on target hardware through the following:

•	 Unit tests

•	 Functional tests

•	 Regression tests

•	 Tested in a software harness that performs the following:

•	 Unit tests

•	 Functional tests

•	 Regression tests

•	 Integration tests

•	 Performance tests

The way that Renesas has built and tested its reusable firmware is a perfect example

of how to apply many of the concepts that we have been discussing throughout this book

and in some circumstances going well beyond those topics. The techniques that it is

applying are ones that every developer interested in reusable code should be leveraging,

examining, and using as a case study for how they build and design their own embedded

systems.

�Going Further
Testing is critical in any embedded system but especially for developers who are

planning to reuse their software. This chapter has covered some basic fundamentals, but

once again, an entire book could be spent on the topic. The following are some ideas on

how you can put this chapter to use, along with where you can go to learn more:

•	 Review McCabe’s12 white paper on using cyclomatic complexity for

testing, located at http://www.mccabe.com/pdf/mccabe-nist235r.

pdf.

•	 Identify a cyclomatic complexity calculator and run it on your own

code base.

12�http://www.mccabe.com/pdf/mccabe-nist235r.pdf

Chapter 11 Testing Portable Embedded Software

http://www.mccabe.com/pdf/mccabe-nist235r.pdf
http://www.mccabe.com/pdf/mccabe-nist235r.pdf
http://www.mccabe.com/pdf/mccabe-nist235r.pdf

275

•	 Reduce the complexity of functions with a value greater than 10 as it

makes sense.

•	 Review each function and identify the test cases that need to be run

in order to cover all paths, inputs, and outputs.

•	 Select a test harness and implement the tests for each function.

•	 Record how long it takes to implement the tests initially. The next

time you port your code, record and compare the development times.

•	 Invest in a copy of James Grenning’s book Test-Driven Development

for Embedded C. The book has great content, but be warned the

examples are a bit strenuous to set up and complete.

•	 Review your development kit or product under development and list

out what would be necessary to perform hardware in-loop testing.

•	 Download and set up Segger’s SystemView trace tool along with

Percepio’s Tracealyzer. Become familiar with how to set up,

automate, and use these trace tools.

•	 Review the Renesas Synergy™ Platform along with the Renesas

Synergy™ Quality Handbook.

Chapter 11 Testing Portable Embedded Software

277
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_12

CHAPTER 12

A Practical Approach
to Code Reuse

“Make everything as simple as possible but not simpler.”

—Albert Einstein

�Being Practical in an Unpractical Environment
Every software developer knows that there are right and wrong ways to develop software

as well as best practices that should be followed. The problem that many teams and

individual developers face is that they find themselves in an environment where doing

things the right way, whether it is through code reuse, automated tests, or any other

technique that we have been discussing, is just not possible. Developers could find

themselves in an environment where

•	 management doesn’t understand software development and has

unrealistic expectations;

•	 development timelines are short or impossible and the only option is

to crank out code;

•	 budgets and resources are scarce but the end results still need to be

delivered;

•	 upper management doesn’t care about quality, reuse, or even

accuracy as long as sales remain strong; and

•	 any situation where developers are pressured in such a way that they

don’t develop software the way they know they should.

278

It is important to remember that even if the environment that is being worked in

is unpractical, developers can still work in a practical manner that gets the job done

the right way. Attempting to cut corners by skipping design or documentation or being

stingy on testing will only increase the costs and delay the project.

Early in my career. I worked for several start-ups where chaos ruled the day.

Management was always jumping from one fire to the next, and getting anything

consistent accomplished was impossible. The development team was pulled from

one direction to the next at least daily and sometimes more often. Despite this rough

environment, I was able to adapt and create quality, reusable firmware by taking a

practical approach that implemented reuse in phases and through carefully planned

baby steps.

�Phases and Baby Steps
Embedded-software developers start their careers with very little knowledge of how to

properly develop software. They start out learning language semantics and how to create

a basic program. A developer can spend a few years learning the intricacies of how to

properly interact with low-level hardware and developing the skills necessary to properly

debug an embedded system. Embedded-software developers learn new skills and gain

new insights and understanding over time and in phases. They don’t just start with all

the knowledge they need to be successful.

Adapting a developer’s or a team’s software-development practices and processes

to improve robustness, be more reusable and portable, and achieve many other positive

attributes that we have been discussing will also not happen overnight. A team could

decide that going forward everything will be reusable by developing a HAL, APIs, and so

on up front, but there are several reasons this may not be possible, such as the following:

•	 Limited budget

•	 Limited development resources

•	 Delivery timelines

•	 Lack of approval from management

•	 Chaotic business wildfires

So, what can a developer do?

Chapter 12 A Practical Approach to Code Reuse

279

First, it is important to recognize that reusability and portability in the long run

will help decrease the total cost of ownership. Second, given how chaotic firmware

development can be when developers don’t follow a strict process or best practices or

continually jump through management hoops, the chances are that building some reuse

into the code up front will still be cheaper and faster in the short term. The trick is to

not go overboard and overdesign the reuse, but rather to identify where the maximum

benefit will be and aim to achieve it.

When time is short or the pressure is on, take a first pass at creating reusable

firmware. Design a HAL with the expectation that it will need to be updated in future

releases. Create configuration tables so that drivers and application modules are easily

configurable rather than hard coded. Add enough flexibility so that at a later time the

software can be improved without bringing down a house of cards.

We have discussed many times in this book that a HAL design, for example, will

require multiple iterations to get right. Implementing code reuse will also require several

iterations and phases before it is completely in place and being utilized successfully.

In general, developers can follow a very simple process that over time will allow them

to implement the practices that we have been discussing throughout this book. This

process contains five steps:

	 1)	 Identify the highest-impact result.

	 2)	 Evaluate what is currently being done and what needs to be done.

	 3)	 Define a roadmap to get from where you currently are to the

desired result.

	 4)	 Execute the roadmap and improve the software, process, or

practice.

	 5)	 Assess the results.

The entire process flow can be seen in Figure 12-1.

Chapter 12 A Practical Approach to Code Reuse

280

This process can follow a very formalized and strict implementation, or it can be

done by a single programmer who simply realizes that things need to change. The

best results are achieved by focusing on one to three improvements until the desired

outcome has been achieved. Let’s discuss in more detail how the reader should go about

following this simple process and how they can get the most from it.

�Identifying Desired Results and Outcomes
There are many possible results and outcomes that a development team may be looking

for when they start engaging in improvements in order to develop reusable firmware.

Embedded-systems developers may be looking to

•	 improve code readability;

•	 decrease number of bugs; and

•	 improve reuse and portability.

Identify

Evaluate

DefineExecute

Assess

Desired Results and Outcomes

Where are we?

Roadmap

Implement

Where are we
now?

Figure 12-1.  Software practice omprovement

Chapter 12 A Practical Approach to Code Reuse

281

From a business perspective, management and shareholders are going to be looking at

•	 decreasing time to market;

•	 decreasing development costs; and

•	 increasing product quality (at least I hope so).

On the surface, these desired results might not look like they overlap at all, but in

many cases the things that a developer wants to improve will have an impact on the

business results. In some situations, though, getting management to see and understand

the benefits can be difficult, and sometimes vice versa. I’ve worked with clients where

management saw the benefits and were failing to get the developers to buy in on how

important reuse and portability are.

The trick is to identify desired engineering results that also mesh with the results

management is looking for. If developers want to decrease bugs and rewrite modules,

while management is looking to decrease costs, the two are going to clash. Developers

need to understand a business need or result first and then translate what can be done

at the engineering level to get that result while simultaneously achieving their own

desired goals. Sometimes this requires that the individual developer get a read on their

management team and forge forward on their own without support in the hope that the

end results justify the means.

When all is said and done, there are three primary outcomes or results that a

business is looking to get out of reusable firmware. In many cases, a developer should

justify their activities to see if their reusable code will improve the odds of achieving their

goals. Always choose the low-hanging fruit that will make the biggest impact with the

smallest amount of effort. Let’s examine these outcomes and a few engineering activities

that go with them.

�Desired Results: Decreasing Time to Market
A major result that many managers and business owners would love to get from their

development teams is decreased time to market. Getting a product to market before

the competition can be a major advantage for a business, especially if a product is new.

Launching a product sooner can

•	 provide a revenue stream to fund the company;

•	 provide a success for the team to celebrate;

Chapter 12 A Practical Approach to Code Reuse

282

•	 beat competitors to market; and

•	 result in decrease costs.

Projects that run their full course—or worse, go over schedule—can cost

dramatically more, sometimes even to the point that the project is canceled or the

business goes bust. This is a primary reason why there is such a big push to decrease

development times. We live in a society that is in a hurry, and unless we work for Apple

we want to be to market first.

There are several reuse options that developers can employ and suggest in order to

decrease their time to market. Several ideas that we have discussed throughout this book

are as follows:

•	 Use a hardware abstraction layer (HALs)

•	 Develop application programming interfaces (APIs)

•	 Leverage existing components and frameworks

•	 Follow best practices for portable firmware

Implementing all or some of these activities can decrease time to market.

Sometimes, the results can be obvious, especially if they are tracked through metrics.

Other times, the results may be subtle.

�Desired Results: Decreasing Development Costs
Decreasing development costs may seem like something that a developer wouldn’t

necessarily care about. They are paid to design a successful product, not minimize costs.

However, the way I always view development costs is that the lower the costs are, the

more profitable the company is. The more profitable the company is, the more willing

they will be to provide their hard-working employees with bonuses, pay raises, and

better benefits. Perhaps that is just my optimistic personality showing through, but there

are other benefits that developers may not think about as well.

Decreasing development costs could be the difference between failing and being

able to successfully launch a new product, company, or widget that could benefit

millions or even billions of people. Many start-ups are strapped for cash, and if they can’t

find a way to decrease their development costs or keep them in check, there is no hope

for their survival.

Chapter 12 A Practical Approach to Code Reuse

283

There are several options available to developers that can help them decrease their

development costs. Several ideas that we have discussed throughout this book are as

follows:

•	 Use a hardware abstraction layer (HALs)

•	 Develop application programming interfaces (APIs)

•	 Leverage existing components and frameworks

•	 Use an automated testing framework

•	 Follow best practices for analyzing software for bugs

•	 License commercial off-the shelf software

There are many different things that can be done to decrease costs, such as buying a

professional debugger and good development tools. Spending money on the right tools

for the job can make a huge impact on total cost.

�Desired Results: Increased Quality
Developing a quality product is a great way for a business and a development team to set

themselves apart from the competition. There is such a push to get to market fast that in

many circumstances quality suffers. A product gets to market and is buggy or has terrible

performance, which then turns off users and requires marketing to perform damage

control. Quality is one of the elements that is critical to every embedded system and

sadly can be a major product differentiator.

There are several different strategies that developers can follow to increase their

firmware quality, all of which would take an entire book to discuss. However, from what

we have discussed in this book, several activities that developers can engage in to ensure

their portable and reusable firmware is of high quality are follows:

•	 Adopt coding standards

•	 Utilize automated tests

•	 Perform static and dynamic code analysis

•	 Perform code reviews

•	 Follow industry best practices

•	 Implement a robust software development lifecycle plan

Chapter 12 A Practical Approach to Code Reuse

284

Implementing these will help to ensure that, over time, your firmware becomes high

quality.

�Evaluating Where You Are
Once a developer has determined the results or the low-hanging fruit that they want to

go after first, they need to figure out how they are going to achieve that outcome. Before

going too far, it’s a good idea to quickly determine the status of the code. For example,

if a developer decides that the code base needs to have a HAL, they should survey the

software to determine whether it currently contains a HAL, how evolved it is if so, and

whether it could be adapted or improved upon.

There are many ways a developer can go about evaluating the current status. A

developer may even want to create a spider diagram similar to that in Figure 1-14 from

Chapter 1 or simply rank the current status on a scale from one to ten, one being that

the feature is not evolved and ten being it is fully evolved. With some numeric value

assigned, a developer can then decide what value the ranking should be and what it will

take to get there.

Getting a stake in the ground for where you currently are and where you need to get

to will help determine the roadmap, or the plan, that will be put into place to make the

firmware more reusable.

�Defining How to Get There
Being practical about reusable firmware really means that a developer doesn’t over-

design and that they build in enough reuse for the job at hand. A formal process might be

the practical way to go, but in many instances just adapting on the fly might be the more

practical approach. Whether a formal roadmap and plan are defined or not, developers

should still at least identify a few metrics to monitor as part of their plan so that they can

measure the improvements and the progress being made toward the goal.

I’ve worked with companies that are so bogged down in process and metric

gathering that a snail is moving at a faster pace than they are. In many cases, developers

need to balance the spectrum of no process to too much process. There is a safe balance

somewhere in the middle that allows developers to work very rapidly. That said, as

you move toward practical code reuse, you should still identify at least a few metrics by

which to track your progress.

Chapter 12 A Practical Approach to Code Reuse

285

�Getting the Most from Metrics
Metrics shouldn’t be something that are tracked just for the sake of tracking metrics.

A good metric will have several characteristics, including the following:

•	 Easily measurable

•	 Automatically trackable

•	 Meaningful

Let’s be honest—some of these are obvious. The key is to find metrics that adhere

to all three of these characteristics. If a developer has to occasionally stop development

when they are under pressure to document and record a metric, they aren’t going to do

it. If they must stop at the end of the day to record a metric when they want to get home

and have a beer, they aren’t going to record it.

In order to get anything from a metric, it has to be easy to measure, automatically

trackable, and meaningful. If it doesn’t meet these criteria, then the data will end up with

holes that will cloud the result and make the metric meaningless. Let’s examine a few

metrics that developers should be interested in tracking and for which it is possible to do

so automatically.

�Metrics Worth Tracking
Everybody loves metrics! Right? In general, while I believe engineers do like to have data

that they can use to track progress, most engineers find metric tracking to be a pain.

The development cycle is busy with engineers being pulled in every direction, yet they

are expected to be disciplined and stop occasionally to take measurements about the

development cycle. This can be a tough thing to do but is a necessary evil.

I strongly believe in tracking metrics, but I believe development teams need to take

a minimalistic approach to metrics. Any metric that is used needs to have meaning and

value if it is to serve any purpose to a team. Having a metric just to have it is not a good

use of engineers’ or managers’ time. So, what metrics should developers be tracking if

they want to understand how reusable firmware is affecting their development cycle?

The primary thesis behind reusable firmware is that it will decrease costs and time

to market. The metrics that are selected should allow a team to check whether they

are decreasing development efforts. There are a million different metrics that could be

tracked, but there are just a handful that I find to be the most useful. These metrics all

come back to tracking the development for each component in the software.

Chapter 12 A Practical Approach to Code Reuse

286

Each component should track several different metrics, which include the following:

•	 Maximum stack size

•	 Real-time function execution

•	 Code size

•	 RAM usage

•	 Cyclomatic complexity

•	 Development time

That’s it! One might want to track the time spent debugging because so much time

is spent debugging. Identifying and using proper debug techniques could dramatically

improve development times and costs. That is beyond this book’s goal, however, so let’s

examine a few of these metrics and understand why we should be tracking them.

First, development time for a component is obvious. We need to understand how

long it takes us to develop the component and then how long it takes during each port to

get the component up and running. Tracking the time spent on a component from one

project to the next can also give a developer a sense of how much time is saved through

reuse. For example, the first time I created an SPI peripheral HAL and implementation

design pattern it took 40 development hours. The next time I used the SPI HAL and

design pattern, it took only eight hours to port and fully test the driver. Before creating a

reusable module, it was taking on average 32 hours to implement and test the drivers.

For an extra eight hours of work, I could then save 24 hours of work on every project

that followed! That was just for that one component. When you consider that there

are at least a dozen components in most projects, it’s easy to not just see but to show

management and clients the time savings resulting from reusing software. The data

is there to justify further improvement efforts, but also can be used as a baseline for

estimating future project timelines.

Second, developers should be tracking each component’s code and RAM usage. As

we discussed earlier in this book, reusable components can potentially use more RAM

and code space. That means that when we start looking at the microcontrollers we are

using, there may be a trade-off where we need to use a more expensive microcontroller

to fit all the code. While we may be saving money and time through reuse, we might be

paying back the money portion in more expensive hardware. This doesn’t have to be the

case, but it’s a good metric to track to ensure that the code base doesn’t get out of control

and to allow developers to easily select the microcontroller they need for a given project.

Chapter 12 A Practical Approach to Code Reuse

287

Tracking these metrics doesn’t have to be a big deal. A script can easily be written

that parses the map-file output from the compiler to calculate the code and RAM usage

and log it to a database or print it in a report. For tracking development time, developers

could use online tools such as Trac, but they could also just as easily use a spreadsheet.

Figure 12-2 shows an example of how a developer can create a simple activity list for a

project containing all the different common software components and then record the

development time for each. The data is fake, but it does provide the reader with a general

idea of how, if they record this data, they can easily start to get minimum, maximum, and

average development hours for different activities.

Figure 12-2 shows just a handful of low-level microcontroller activities, but the list

can be fully expanded to include BSP and application components as well. A complete

list can be found with the download materials for this book. As a team builds more

products, they will very quickly be able to not only improve their estimation skills but

also calculate how taking the time up front to do things right can impact their project.

Figure 12-2.  Component-development metric tracking

Chapter 12 A Practical Approach to Code Reuse

288

�Assess the Results
Once the implementation is under way, developers can continually monitor their

progress and assess where they are at in relation to getting the desired results. Having

good metrics is key to being able to assess the results appropriately. Once the results

have been achieved, developers can move back to the Identify step to determine what

their next focus point will be to improve the reusability of their firmware.

Before we conclude this chapter and the book, I would like to point out several

additional best practices that developers should keep their eyes out for in order to ensure

that they can develop reusable firmware.

�Recognizing Design Patterns
A core point in this book that we have been tip-toeing around is that embedded-software

developers should not be reinventing the wheel. When it comes to interacting with

hardware or software components, pretty much everything has been done before. The

C programming language is almost 50 years old! Microcontrollers have been around

since 1970. Someone has already figured out the best way to interact with an SPI bus, a

GPIO, a UART. Successful embedded-software developers don’t reinvent the wheel. They

recognize design patterns in the problems that they are trying to solve and then use and

adapt those design patterns to the problem at hand.

My biggest complaint when I was an undergraduate taking computer science classes

was that our professors wouldn’t teach us about design patterns, not even how to

recognize them, but instead would force us to reinvent and create from scratch libraries

and solutions that already existed. We spent painstaking time inventing and debugging

algorithms for which we could have adapted an existing solution. The biggest lesson I

took away from these encounters was that for a Phd, it’s all about the journey, and there

is no real hurry to get to the solution. For an engineer, it’s about finding the simplest and

quickest solution.

The key to being a successful embedded-software engineer is to recognize design

patterns and implement them where appropriate. For example, when using a UART to

receive messages from an external source, a developer is going to need a circular buffer.

Don’t take three days to design a new circular buffer (I see engineers do this all the time);

use one of the thousands of solutions that have already been implemented and move on

to other design problems that truly deserve your attention.

Chapter 12 A Practical Approach to Code Reuse

289

There are several factors that developers should watch for in order to identify a

design pattern. They can all be summed up in just a single point:

•	 If I’ve seen this before or think I may need it again, then a design

pattern either already exists or I should create a new one for future use.

It’s that simple. It’s not rocket science, and believe me, I know!

There are several common design patterns that the reader can find in almost every

embedded system. These patterns include:

•	 Memory-mapping drivers

•	 Calculating checksums

•	 Command parsers and interpreters

•	 Error handling

•	 Program updating (bootloaders)

•	 Calibration

•	 Circular buffers

•	 and more

The list could go on and on. As you develop your software, ask yourself if this is a

problem that someone else may have encountered in the past, or that you have, and, if

so, do a quick search or browse your own code for the solution. It can save considerable

time and effort. Once a developer starts to recognize these design patterns, they can start

creating their own design-pattern templates and checklists.

�Creating Templates and Checklists
Over the years, as I have recognized different design patterns in the software that

I’ve written, I have created a template that could be used in the future to implement

that pattern faster. The template could be nothing more than a high-level software

diagram showing how to implement a solution, or it could be an abstracted low-level

implementation. For example, one of the first design patterns I ever implemented was

Chapter 12 A Practical Approach to Code Reuse

290

for interacting with external memory devices. We discussed a few chapters back that

every memory device follows JEDEC standards, which makes writing, reading, and

interacting with those devices the same no matter who the manufacturer is. Interacting

with those devices becomes a design pattern, and once a developer creates that pattern

once, they can use it every time that problem presents itself.

Another template example is the Doxygen templates that are used to document

code. Having a consistent method for documenting code is crucial. It needs to be done

over and over again for every project. Rather than creating a new way to document

software in every project, I created a template that I could easily use on each and every

project. Over time, I do update and adjust those templates, but the base pattern is there,

and it decreases the effort tremendously.

Templates are a great way to speed up software development and prevent developers

from repeating work that has already done.

Another tool that I have found to be indispensable is using checklists. Checklists

can be used to manage everything from creating a new project and checking in a project

to revision control and final reviews for releasing software. A checklist is a great way to

take a complex procedure, or even one that is not done very often, and ensure that it is

repeatable.

For example, I have a project-setup checklist that I use at the start of every project.

The checklist doesn’t go into low-level details but has the high-level points to remind me

what I should set up and configure in order to get the project up and running the fastest.

For example, my project-setup checklist is set up to follow several different phases, as

shown in Figure 12-3.

Chapter 12 A Practical Approach to Code Reuse

291

Figure 12-3.  Project-startup checklist1

1�https://www.beningo.com/tools-embedded-software-start-up-checklist/

Chapter 12 A Practical Approach to Code Reuse

https://www.beningo.com/tools-embedded-software-start-up-checklist/

292

As the reader can tell from the checklist, there is a lot that is done before a single line

of code is ever written for the project. Many of these items would be easily overlooked

if there were pressure on to start banging out code as quickly as possible. The checklist

ensures that proper procedures are followed that will maximize the project’s chances for

success.

Every firmware project that I work on starts with this checklist. If you examine the

checklist carefully, you’ll also notice that there are entries that remind me to bring

templates into the project. For example, there is mention of the Doxygen templates,

along with HALs and APIs. At that bullet point, if the project that is being developed

requires a communication protocol, circular buffer, command parser, and so forth,

those template components would be added to the code base. By the time the checklist

is completed, there is a nearly completed skeleton for the software along with the

implementation for any common design patterns.

In many instances, in just a day or so a base system can be brought online that

if developed from scratch would easily take a month or more. This is the power that

reusability and portability bring to the table.

�Version Control Is Your Best Friend
Version-control systems are a great way to share source code between developers.

They provide the ability for multiple people to simultaneously work on the same code

base without the danger of sending files back and forth constantly. Make a mistake

while developing and rest assured that the simple press of a button can roll back the

code to a fresh square one. History has shown that working without a version-control

system is a disaster waiting to happen! Version-control systems are an essential

development tool, and there are several tips developers should follow in order to get

the most from them.

Chapter 12 A Practical Approach to Code Reuse

293

�Tip #1: Commit Frequently
Embedded software at times takes on a life of its own and tends to have a temperamental

attitude. A developer makes a few minor changes and the entire system destabilizes into

frenzy. The developer has no fear and reverses the few changes he made and voila! The

system is still broken. Without a version-control system, the developer scratches their

head in panic and tries to understand what change they made that they don’t remember

from five minutes ago! The engineer using version control, on the other hand, performs

a right click and simply reverts to the previous working version of the code and now

cautiously moves forward. But what if the developer had gone days without committing

his code? Days’ worth of effort could be lost, which is why developers using version

control should commit frequently! Complete a feature and commit. Get a partial feature

working, commit. This will not only save the engineer time when things go wrong but

will also leave a nice trail in the version-control system of the changes that were made.

�Tip #2: Fill in the commit log
It is great if an engineer commits their code changes frequently; however, it can

prove to be a futile effort if sufficient information is not provided in the change log.

Most version-control tools will allow comments to be made at the time the code is

committed. Fill in the log with helpful and useful information! Don’t leave it blank or

put cryptic information here. In the future, a bug may get introduced into the code, and

as the developer backtracks the versions, it will be essential that the log contain useful

information on what changed. It takes only a few moments and will save many hours of

frustration and headaches! Try to come up with a common log format that needs to be

filled in before each commit.

Chapter 12 A Practical Approach to Code Reuse

294

�Tip #3: Don’t forget to add files to the VCS
Version-control systems have been known to play a trick or two on a developer. The

biggest is when a developer thinks that he is committing code when he actually isn’t!

How can this happen? Most systems require that when you create a file you add it to

revision control. If this isn’t done, then the system will happily commit and ignore those

files that haven’t been added. So, don’t forget to add files to the VCS!

�Tip #4: Define a commit process
It is really easy to forget to add files to revision control, properly log changes, and a

variety of other tasks associated with version control systems. The best thing that can be

done is to create a process for each of the different tasks that need to be performed. For

example, create a commit process. It would look something like the following:

	 1)	 Update version log within the code base.

	 2)	 Copy the changes.

	 3)	 Add files to the VCS.

	 4)	 Begin the commit process.

	 5)	 Paste the change log into the commit comments and add any

additional relevant comments.

	 6)	 Complete the commit.

�Tip #5: Lock modules that are in process
There are times when multiple developers are working on a project and might need to

modify the same module. Version-control systems often have a feature that allows the

programmer to lock a particular module for editing. This prevents another programmer

from modifying the file at the same time and thus helps to prevent conflicts within the

code base.

Chapter 12 A Practical Approach to Code Reuse

295

�Tip #6: Utilize the code-comparison tools
There will inevitably come a time when a bug creeps into the code unnoticed. At some

point it will be discovered, and then the question will be asked, “What changed?” The

only way to know for sure is to compare different revision levels of the code. This could

be a painful process if it weren’t for the fact that most version-control systems include

a difference tool. This tool allows a side-by-side comparison of files within the code

across different versions of the code. These alterations are highlighted and can then be

examined as the potential source of the bug.

�Tip #7: Don’t fear merging code branches
The concept of branching the code into a separate version, making changes, and

then later merging it back into the main version trunk can be scary! What happens if

something goes wrong? What if it isn’t merged properly and the main branch becomes

corrupted? Beginners will often fear merging branches, but do not be concerned! This is

a common occurrence, especially when multiple developers are involved in the project.

If a mistake is made it is easy to go back a version and restart! The best way to get over

this fear is to practice.

�What Is the Cost to Do Nothing?
An important question that every developer and every team should ask themselves

before beginning any improvement to their embedded-software processes or

code base is:

What is the cost to do nothing?

I come across so many developers, teams, and clients who will look at the $2,000

price tag on a compiler, computer, or development tool and instantly say it costs too

much. They never stop for a moment to ask what the cost is if they don’t purchase the

tool. Purchasing a $2,000 tool might save the company $10,000 or even $20,000 over the

lifetime of that tool. The problem is that most managers and development teams are

short-sighted in their thinking, looking only at what is right in front of them and not what

is in the best interest of the company in the long-term.

Chapter 12 A Practical Approach to Code Reuse

296

When I first started my business, I had worked at several large and small companies

and was absolutely set on making sure that:

	 1)	 I would use the right tools for the job no matter the cost.

	 2)	 I would always evaluate what is in the long-term best interest for

my clients.

In several instances, I purchased tools that cost more than $10,000 to the mutual

benefit of both myself and my clients. Each client that I served saved the $10,000 on the

tools, which they were then able to put back into their own development cycles. In the

grand scheme of things, the $10,000 was nothing to those companies, but to those clients

it was a huge gesture.

When developers are evaluating whether to start using reusable firmware in their

own development cycles, they need to ask themselves what the short-term and long-

term costs will be if they do nothing. It may cost the company $10,000, $20,000, or

maybe even $50,000 up front to create firmware that is reusable, or those amounts over

several years as reuse is increased in iterations. But what is the return on investment

over one, two, five, and ten years? It might be that with an upfront investment of $10,000

a company can save $100,000 in the next two years. Perhaps future products can beat

the competition to market or improve quality to a point that customers prefer their

product.

I see so many teams that make short-term decisions without considering the long-

term perspective. Unfortunately, I see many of these teams choke, stumble, and, in some

cases, even go out of business. Others are able to just barely survive and end up in a mad

dash to implement reusability and best practices that they should have been using all

along.

Don’t get caught up in short-term thinking. Keep this question on your mind and

ask it at every crossroads. The costliest mistakes that I’ve seen in the industry and in life

happen not when people jump into a situation, but rather when they do nothing and

hope for the best.

Chapter 12 A Practical Approach to Code Reuse

297

�Final Thoughts
When looking back over my short career so far and examining what has made the

greatest impact on my clients’ products and software, I can sum it up in one word: reuse.

It’s a simple idea to reuse embedded software. Reuse has been going on for decades in

the PC world. Yet, firmware developers have always opted for writing software in a one-

off fashion, ignoring reuse and opting to just get it done and deal with the fires that are

burning today.

As we progress through the coming decades, it is absolutely clear in my mind

that the teams that will be the most successful are the teams that utilize reuse to the

furthest extent. Teams that leverage HALs, APIs, microcontroller platforms, and even

automatically generated code will develop software far faster than today’s standards.

Teams that reuse code can focus on their product’s key features, the differentiators that

set it apart from the competition.

Embedded-software developers have always been experts in the microcontroller,

the low-level bits and bytes. That is going to change over the coming decades. More

and more developers are going to be experts in HALs and APIs and have little to no

knowledge about the hardware. As we move to 32-bit microcontrollers, the complexity

will become so high that the only way we can possibly expect to get a product to market

in a year or less will be to reuse what we have already created and leverage existing code.

Microcontroller manufacturers, as experts in their own hardware, are starting

to provide frameworks and HALs for developers to use. We will see the hardware

abstracted, but even when that does happen, teams that utilize reusable concepts will

still have an edge over teams that are just getting things done for today with no thought

about tomorrow.

I’ve had the pleasure of working with teams in more than a dozen different countries

to improve software-development processes and help teams get their products to

market. As you contemplate the material and concepts in this book, I encourage you to

start with the low-hanging fruit that will have the most dramatic impact on your software

and business in the shortest amount of time. Reinvesting the time saved to further

implement and improve your software will have a powerful effect on your products and

end users.

Chapter 12 A Practical Approach to Code Reuse

298

�Going Further
We have covered many topics in this book, and we are only at the beginning. Don’t

forget that this will be an iterative process that very well might take you years. These

are exciting times, and the following are a few more thoughts on where you can go

from here:

•	 Consider purchasing my API Standard2 book, which provides a

Doxygen-documented starting point for many microcontroller

peripheral features and provides the Doxygen template source code

with it.

•	 Determine whether this will be a personal development effort to start

developing more reusable firmware or whether this is a team effort

that will have management support. Get the key players and decision

makers on board.

•	 Identify three potential areas to immediately improve in. What is your

company’s low-hanging fruit? Could it be:

•	 Implementing Doxygen templates for readability?

•	 Leveraging the APIs and HALs in this book?

•	 Identifying design patterns used in your products?

•	 Once you have your top three priorities, rank each priority and review

how well you are currently doing in this area.

•	 Create a roadmap of how these three priorities will be implemented in the

next several months and what needs to happen in order to be successful.

Don’t forget that this doesn’t need to be a detailed, formal plan.

•	 Identify metrics that need to be tracked in order to monitor the

improvements and also the results that they are getting for the

company.

2�https://www.beningo.com/store/an-api-standard-for-mcus/

Chapter 12 A Practical Approach to Code Reuse

https://www.beningo.com/store/an-api-standard-for-mcus/

299

•	 Schedule reviews to monitor progress; adjust the roadmap and plan

if necessary.

•	 Review your products and identify common design elements and

procedures that could be turned into templates and checklists.

Schedule time to convert these design patterns and procedures.

•	 Calculate the cost in opportunity, project delays, troubleshooting,

and development costs that doing nothing could incur.

•	 Enjoy developing reusable firmware and improving the products that

you work on.

Chapter 12 A Practical Approach to Code Reuse

301
© Jacob Beningo 2017
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2

Index

A
Abstract Data Types (ADTs)

abstractions, 80
definition, 81
implementation data structure, 82
initialization function, 83
interface specification, 81
operations, 81
pop method, 84
stack method initialization, 83
Stack_Push, 85

Abstractions, see Abstract Data
Types (ADTs)

Application Programming Interfaces
(APIs), 23

architecture, 24
characteristics, 49

consistent look and feel, 53
const keyword, 49
documentation, 53
flexible and configuration, 53
Micrium uc/OS-III, 54
naming conventions, 50
uOS III, 52

comparison (API and HAL), 58
designing process, 53
embedded-software developers, 49
FreeRTOS TaskCreate, 54
HAL design, 57
scope, 48

ThreadX tx_thread_create, 55
wrappers, 55

Assertion fundamentals
assert.h header file, 68
definition, 68
input and pre-condition, 69
macro implementation, 69

Automating tests, 269

B
Boogeyman

integration issues, 35
issues, 33
microcontroller vendors, 34
peripheral technique, 35
ramifications, 34
readability issues, 35

Bootloaders framework, 252

C
Callback functions

ArrayInit function, 88
definition, 86
elements to random numbers, 89
implementation, 87
initialization code, 87
instances, 86
lower-level code, 87
signal handler, 87

https://doi.org/10.1007/978-1-4842-3297-2

302

Classes definition, 80
Cohesion, 11
Commercial off-the-shelf (COTS), 1
Coupling method, 11
C programming language

bit fields, 15
conditional compilation, 18
data type, 13
demonstration code, 13
preprocessor directives, 16
structures and unions, 14

D
Data hiding, 86
Designing API

application framework, 246
creation, 247
embedded applications

advantages, 244
application framework, 244
disadvantages, 244
hardware abstraction layer, 243
implementation, 243
modifications, 245

modules, 245
software frameworks

bootloaders, 252
console applications, 250
FAT file system, 254
parsers, 251
RTOS and schedulers, 248

Design patterns, 90–91
Device driver models, 70

blocking driver, 70
non-blocking driver, 70
polling, 71

Documentation, 121

C code
coding style guide, 144
commenting code, 143
consistent comment

location, 146
Doxygen tags, 144
explanation, 143
file header, 145
line command, 146
mathematical type

identification, 146
template creation, 145
update comments, 147

Doxygen (see Doxygen)
DoxyWizard

diagrams setup, 131
folder structure, 127
mode setup, 129
output setup, 130
project setup, 127
run tab, 128
wizard tab, 129

embedded software, 121
enum and struct, 132
functions, 133

code block, 136
description block, 135
factors, 133
parameter and return block, 135
pre-condition/post-condition

block, 135
related block, 136
revision log, 137
start block, 134

load operation, 122
approaches, 123
single source, 123
software spectrum, 123

Index

303

main.c file, 122
main page, 140
modules, 137

@Addtogroup comment block, 139
header file, 137
source files, 138

reusable template, 139
Doxygen, 124

comment fundamentals, 131
control and develop documentation, 125
installation, 126

Drivers
abstraction and ADT, 80
component definition, 76
component organization, 77
components, 77–78
expected results and

recommendations, 91
files, 77
fundamental unit, 76
interface, 64, 78

component identification, 66
design contract, 66–67
hardware abstraction layer, 65
lasagna software architecture, 65
outputs, 67
pre-conditions, 67

modules, 78
naming convention, 78
object-oriented programming, 79
procedural language, 79

E
EEPROM devices, See also

Memory devices
datasheet, 221
EepromErase_t, 239

EepromRegister_t definition, 226
extending HAL, 237
_ext file, 239
feature comparison, 222
files, 238
interface, 224
memory devices, 221
repeat, 237
stubs and documentation templates

functions, 227
Init(), 228–229
Read(), 229–230
Write(), 230–231

target processor, 231
functions, 232
initialization function, 232
read function, 235
write function, 233

testing, 237
write state enumeration, 226

Embedded-software processes/code
base, 295

Encapsulation, 80, 86
Error handling, 89

F
FAT file systems, 254
Firmware project

advantages, 4
benefits, 4
code reuse, 1
development team, 3
disadvantages, 4
embedded-software, 5–6

architecture, 20
dependencies and interactions, 19
design/reuse, 18

Index

304

formal models, 21
functional boundary, 19
interfaces, 19
low-level driver, 19
portable firmware creation, 19
three-layer model, 20

features, 3
HAL (see Hardware Abstraction

Layers (HAL))
microcontrollers, 2
modularity, 9
module coupling and cohesion, 10
project development time, 2
portability issues (see C programming

language)
qualities of, 8
software, 3
smart solar panel, 7
standard revisions, 12

Functional testing
black-box/white-box testing

methods, 264
test-driven development, 265
testing process, 264

G
General-purpose input/output (GPIO)

datasheet, 167
HAL interface, 169
microcontrollers, 168
overview, 167
peripheral features, 168
stubs and documentation templates, 172

Dio.c, 182
Dio_Config.c, 178
Dio_Config.h, 174

Dio.h, 180
HAL organization, 174

target processor, 192
ChannelRead, 195
ChannelWrite, 196
Dio_ChannelToggle function, 196
Dio_ChannelWrite function, 196
GPIO initialization, 194
pointer array memory map, 193
RegisterRead, 197
RegisterWrite, 197
repeat option, 198
test harnesses, 198

H
Hardware abstraction layer (HAL), 21, 149

application layer, 22
APIs, 30 (see also Application

Programming Interfaces (APIs))
architecture, 23
board-support package, 22
benefits, 21, 33
characteristics, 36, 150

C99, 38
coding standards, 36
debugging software, 43
deterministic and well-understood

behavior, 41
error-handling and diagnostic

capabilities, 42
evaluation, 44
extensible, 40
hardware features, 39
integrated regression testing, 43
integration server, 43
modern compiler, 38
modular and adaptable, 40

Firmware project (cont.)

Index

305

reasonable documentation and
comments, 37

well-defined coding standard, 37
configuration layer, 22
comparison list, 152
design process, 151

all-encompassing HAL, 161
core features identification, 161
Doxygen, 162
initialization, 164
iterate, 163
multiple development kits, 164
naming conventions, 164
register-access hooks, 162
second set of eyes, 162
view, 163

driver layer, 22
factors, 46
Good, Bad, and Ugly, 33
GPIO peripheral, 47
interface

callback interface, 154
creation, 153
developers, 155
generic definition, 154
peripheral features, 153

landscape, 31
microcontroller peripheral

datasheet, 46, 152
middleware, 22
peripheral identification, 152, 160
platform, 31
potential issues (see Boogeyman)
software terminology, 22
stubs and documentation

templates, 155
target processor(s), 158
testing, 158

Hardware in-loop (HIL) testing, 266
automating tests, 269
COMM port, 267
components, 267
debugger, 267
factors, 268
Python scripts, 268
regression, 268

I, J, K, L
Inheritance, 80
Internet of Things (IoT), 6
Invariants, 68

M, N
Memory devices

flash and EEPROM devices, 219
internal and external devices, 220
issues, 220
overview, 219

Memory map
CPU, 63
EEPROM, 63
flash memory regions, 62
generic microcontroller memory, 64
memory, 64
microcontroller, 62
peripheral memory, 63
RAM, 62–63
ROM, 62

Memory-mapping methodologies
arrays, 106
controls, 101
declaration, 104
direct register access, 102
methods, 101

Index

306

non-constant pointer, 104
pointers, 102
register bit, 103
structures, 105
volatile keyword, 103–104

Module coupling, 11

O
Object-Oriented Programming (OOP), 79
Objects definition, 80

P, Q
Polling vs. Interrupt-driven drivers, 71

attitude determination and control, 76
DMA-controlled data transfer, 75
Hello World, 72
interrupts, 74
printf statement, 72, 74
transmit interrupt frequency, 73
UART transmit interrupt duration, 74

Portable firmware see Firmware
project

characteristics, 27
code evaluation, 26
portability, 27
reuse software, 25,

Post-conditions, 68
Practical approach

definition, 284
desired results and outcomes

business perspective, management
and shareholders, 281

development costs, 282
identification, 280
quality increases, 283

time to market, 281
evaluation, 284
metrics, 285
phases, 278
recognizing design patterns, 288
results, 288
software practice improvement, 280
templates and checklists creation, 289
tracking metrics, 285
unpractical environment, 277
VCS (see Version-control systems (VCS))

Pre-conditions, 68
Project organization, 24

R
Real-Time Operating System (RTOS), 249

advantages, 249
compiler optimizations, 249
microchip, 249
scheduler, 248
scheduling algorithm, 250
wrapper layer, 249

Regression testing, 257, 268
Renesas Synergy™ platform, 272
Reusable drivers, 95

const keyword, 99
extern and static keywords, 95

explicit, 97
function and variable scope, 97
global variables, 96
implicit, 96
programming language, 96

implementation, 117
memory-mapping (see Memory-

mapping methodologies)
timer (see Timer driver)
volatile keyword, 98

Memory-mapping methodologies (cont.)

Index

307

location, 99
optimization, 98
prevent code optimization, 99
UART Tx, 98

S
Scheduler, see Real-Time Operating

System (RTOS)
Serial Peripheral Interface bus (SPI)

advantages, 201
architecture, 202
datasheet, 202
features, 203
hardware level, 201
interface, 204
repeat, 216
stubs and documentation templates

design patterns, 205
init function, 206
module files, 206
transfer function, 207

target processor
array mapping, 209
flow chart, 213
initialization function, 210
Spi_Transfer function, 212–213

testing, 215
Side effects, 68
Standard tests, 263

T
Test-Driven Development (TDD), 265
Testing

application software, 270
block diagram, 270
deadlock, 272
events, 271

reusable firmware, 271
task statistics, 271

automation and regression, 258
development teams, 258
embedded system, 257
functional testing (see Functional

testing)
HIL testing, 266
regression testing, 257
renesas Synergy™ platform, 272
standard tests, 263
unit test, 258

Timer driver
channel definition, 110
configuration structure, 109
configuration table, 108, 110
design pattern, 116
driver interface, 116
initialization function, 112
init loop code, 115
overview, 107
peripheral channels, 109
pointer arrays, 111
steps, 108

U
Unit testing, 258

cyclomatic complexity
function, 261
if/else statements, 262
linearly independent paths, 261
measurements, 260
nodes (program statements), 262
parameters, 261
tools, 263

function, 259
harness test, 259

Index

308

V, W, X, Y, Z

Version-control systems (VCS)
add files, 294
code-comparison tools, 295

commit frequently, 293
log information, 293–294
process definition, 294
lock modules, 294
merging code branches, 295

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Preface
	Introduction
	Chapter 1: Concepts for Developing Portable Firmware
	 Why Code Reuse Matters
	 Portable Firmware
	 Modularity
	 Module Coupling and Cohesion
	 Following a Standard
	 Portability Issues in C—Data Types
	 Portability Issues in C—Structures and Unions
	 Portability Issues in C—Bit Fields
	 Portability Issues in C—Preprocessor Directives
	 Embedded-Software Architecture
	 Hardware Abstraction Layers (HAL)5
	 Application Programming Interfaces (APIs)6
	 Project Organization
	 Getting Started Writing Portable Firmware
	 Going Further

	Chapter 2: API and HAL Fundamentals
	 The Wonderful World of HALs
	 APIs Versus HALs

	 The API and HAL Landscape
	 The Good, Bad, and Ugly
	 Potential Issues and the Boogeyman
	 Characteristics Every HAL Should Exhibit
	 Characteristic #1: Contains a Well-Defined Coding Standard
	 Characteristic #2: Reasonable Documentation and Comments
	 Characteristic #3: Written in C99
	 Characteristic #4: Can Be Compiled in Any Modern Compiler
	 Characteristic #5: Abstract Useful Hardware Features
	 Characteristic #6: Easily Extensible
	 Characteristic #7: Modular and Adaptable
	 Characteristic #8: Deterministic and Well-Understood Behavior
	 Characteristic #9: Error-Handling and Diagnostic Capabilities
	 Characteristic #10: Integrated Regression Testing

	 Evaluating HAL Characteristics
	 To Build or Not to Build
	 A First Look at a HAL
	 The API Scope
	 API Characteristics to Look For
	 Characteristic #1: Using const Frequently
	 Characteristic #2: Easily Understood Naming Conventions
	 Characteristics #3: Consistent Look and Feel
	 Characteristic #4: Well Documented
	 Characteristic #5: Flexible and Configurable

	 Designing Your Own APIs
	 A First Look at an API
	 Wrapping APIs
	 Why Design Your Own APIs and HALs?
	 Comparing APIs and HALs
	 Going Further

	Chapter 3: Device Driver Fundamentals in C
	 Understanding the Memory Map
	 Planning the Driver Interfaces
	 Design by Contract
	 Assertion Fundamentals
	 Device Driver Models
	 Polling Versus Interrupt-Driven Drivers
	 Driver Component Definition
	 Naming Convention Recommendations
	 Object-Oriented Programming in C
	 Abstractions and Abstract Data Types (ADTs)
	 Encapsulation and Data Hiding
	 Callback Functions
	 Error Handling
	 Leverage Design Patterns
	 Expected Results and Recommendations
	 Going Further

	Chapter 4: Writing Reusable Drivers
	 Reusable Drivers
	 Deciphering the extern and static Keywords
	 Deciphering the volatile Keyword
	 Deciphering the const Keyword
	 Memory-Mapping Methodologies
	 Mapping Memory Directly
	 Mapping Memory with Pointers
	 Mapping Memory with Structures
	 Using Pointer Arrays in Driver Design

	 Creating a Timer Driver Overview
	 Step #1: Define the Timer’s Configuration Table
	 Step #2: Define the Timer’s Peripheral Channels
	 Step #3: Populate the Timer’s Configuration Table
	 Step #4: Create the Timer’s Pointer Arrays
	 Step #5: Create the Initialization Function
	 Step #6: Fill in the Timer Driver Interface
	 Step #7: Maintain and Port the Design Pattern

	 Selecting the Right Driver Implementation
	 Going Further

	Chapter 5: Documenting Firmware with Doxygen
	 The Importance of Good Documentation
	 Easing the Documentation Load
	 An Introduction to Doxygen
	 Installing Doxygen
	 Documentation Project Setup
	 Doxygen Comment Fundamentals
	 Documenting enum and struct
	 Documenting Functions
	 Documenting Modules
	 Creating a Reusable Template
	 Generating a Main Page
	 Ten Tips for Commenting C Code�
	 Tip #1: Explain the Why, Not the How
	 Tip #2: Comment Before Coding
	 Tip #3: Use Doxygen Tags
	 Tip #4: Adopt a Code Style Guide
	 Tip #5: Use a File Header
	 Tip #6: Create a Commenting Template
	 Tip #7: Have a Consistent Comment Location
	 Tip #8: Don’t Comment Every Line
	 Tip #9: Start Mathematical Type Identifiers with the Type
	 Tip #10: Update Comments with Code Updates

	 A Few Final Thoughts on Documentation
	 Going Further

	Chapter 6: The Hardware Abstraction Layer Design Process
	 Why Use a HAL?
	 A Good HAL’s Characteristics
	 The HAL Design Process
	 Step #1: Review the Microcontroller Peripheral Datasheet
	 Step #2: Identify Peripheral Features
	 Step #3: Design and Create the Interface
	 Step #4: Create Stubs and Documentation Templates
	 Step #5: Implement for Target Processor(s)
	 Step #6: Test, Test, Test
	 Step #7: Repeat for the Next Peripheral
	 10 Tips for Designing a HAL�
	 Tip #1: Identify Core Features
	 Tip #2: Avoid an All-Encompassing HAL
	 Tip #3: Add Register-Access Hooks
	 Tip #4: Use Doxygen to Outline the HAL
	 Tip #5: Get a Second Set of Eyes
	 Tip #6: Don’t Be Afraid to Iterate
	 Tip #7: Keep the View at 30,000 Feet
	 Tip #8: Use Appropriate Naming Conventions
	 Tip #9: Include a Parameter for Initialization
	 Tip #10: Deploy on Multiple Development Kits

	 Going Further

	Chapter 7: HAL Design for GPIO
	 GPIO Peripherals Overview
	 Step #1: Review the GPIO Peripheral Datasheet
	 Step #2: GPIO Peripheral Features
	 Step #3: Design and Create the GPIO HAL Interface
	 Step #4: Create GPIO Stubs and Documentation Templates
	 Step #5: Implement GPIO HAL for Target Processor
	 Step #6: Test, Test, Test
	 Step #7: Repeat for the Next Peripheral
	 Going Further

	Chapter 8: HAL Design for SPI
	 An Overview of SPI Peripherals
	 Step #1: Review the SPI Peripheral Datasheet
	 Step #2: SPI Peripheral Features
	 Step #3: Design and Create the SPI HAL Interface
	 Step #4: Create SPI Stubs and Documentation Templates
	 Step #5: Implement SPI HAL for Target Processor
	 Step #6: Test, Test, Test
	 Step #7: Repeat for the Next Peripheral
	 Going Further

	Chapter 9: HAL Design for EEPROM and Memory Devices
	 An Overview of Memory Devices
	 Step #1: Review the EEPROM Peripheral Datasheet
	 Step #2: EEPROM Peripheral Features
	 Step #3: Design and Create the EEPROM HAL Interface
	 Step #4: Create EEPROM Stubs and Documentation Templates
	 Step #5: Implement EEPROM HAL for Target Processor
	 Step #6: Test, Test, Test
	 Step #7: Repeat for the Next Peripheral
	 Extending the EEPROM HAL
	 Going Further

	Chapter 10: API Design for Embedded Applications
	 Applications Made Easier
	 Designing APIs
	 Application Frameworks
	 Creating Your Own APIs
	 Common Software Frameworks—RTOS and Schedulers
	 Common Software Frameworks— Console Applications
	 Common Software Frameworks—Bootloaders
	 Common Software Frameworks—FAT File System
	 Going Further

	Chapter 11: Testing Portable Embedded Software
	 Cross Your Fingers and Pray
	 Unit Testing
	 Taking Advantage of Cyclomatic Complexity for Unit Testing
	 Standard Interface . . . Standard Tests
	 Functional Testing
	 Test-Driven Development

	 Hardware In-Loop Testing
	 Regression Testing
	 Automating Tests

	 Using Trace to Verify Application Software
	 A Modern Example: The Renesas Synergy™ Platform
	 Going Further

	Chapter 12: A Practical Approach to Code Reuse
	 Being Practical in an Unpractical Environment
	 Phases and Baby Steps
	 Identifying Desired Results and Outcomes
	 Desired Results: Decreasing Time to Market
	 Desired Results: Decreasing Development Costs
	 Desired Results: Increased Quality

	 Evaluating Where You Are
	 Defining How to Get There
	 Getting the Most from Metrics
	 Metrics Worth Tracking
	 Assess the Results
	 Recognizing Design Patterns
	 Creating Templates and Checklists
	 Version Control Is Your Best Friend
	 Tip #1: Commit Frequently
	 Tip #2: Fill in the commit log
	 Tip #3: Don’t forget to add files to the VCS
	 Tip #4: Define a commit process
	 Tip #5: Lock modules that are in process
	 Tip #6: Utilize the code-comparison tools
	 Tip #7: Don’t fear merging code branches

	 What Is the Cost to Do Nothing?
	 Final Thoughts
	 Going Further

	Index

