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Preface

In 2001, when I was a bright-eyed college sophomore, I would spend my evenings doing 

something a bit unusual—writing embedded software. Writing embedded software 

is not necessarily unusual, except that any observer would think that I wasn’t writing 

the software for any particular purpose. I was not designing any specific product or 

experimenting to understand how things work. Instead, I was focused on understanding 

how to write portable and reusable software for microcontroller-based systems.

My idea and hope was that I could develop libraries and code modules that would 

allow me to quickly meet any project requirements that might be thrown my way. In 

theory, these libraries would allow me to get a microcontroller up and running and 

interface with external communication devices at a fraction of the time and cost that it 

would take if I started from scratch every time.

Looking back on this endeavor, I realize that this was a pivotal period that would 

permeate my professional career, even now. Unfortunately, as a college student in 2001, 

the libraries and components that I created were written in assembly and closely tied to 

a single target device. Assembly language compilers were freely offered in those days, 

and the preferred C compilers cost several thousand dollars, with no code-size limitation 

trials. (The microcontrollers I was using did not have a GCC variant available at that 

time).

The fortunes of time have thankfully made C compilers more readily available, and 

assembly language code has gone nearly the way of the dinosaurs. What is perhaps far 

more interesting about this tale is that this early interest in developing modular and 

reusable components in assembly language found its way into my professional career 

developing embedded software in C/C++. The result has been a steadily improving 

set of techniques, APIs, HALs, components, and design patterns that can be applied to 

resource-constrained embedded systems.

As a consultant and technical educator, each year I work with companies by the 

dozens and engineers by the thousands who struggle to develop portable and reusable 

embedded software. Many efforts are repeated from one project to the next, resulting in 

wasted time, effort, money, and potential to innovate.
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One of my hopes with this book and the associated API and HAL Standard is to 

share my experiences and provide a framework that other developers may leverage and 

use in their own development efforts. My goal is that readers won’t just become better 

developers but will also be able to keep pace with the demanding modern development 

cycle and still have time to innovate and push the envelope.

Implementing the processes and techniques contained in this book should help any 

developer decrease their development costs and time to market while improving the 

portability and reliability of their software. At a minimum, developers will find that they 

no longer need to keep reinventing the wheel every time a new project starts.

Happy coding,

Jacob Beningo

September 2017

Preface
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Introduction

Since the turn of the twenty-first century, microcontroller-based systems have become 

extremely complex. Microcontrollers started out as simple 8-bit devices running at 

bus speeds in the 8 MHz to 48 MHz range. Since then, microcontrollers have become 

complex and powerful 32-bit devices running at clock speeds faster than 200 MHz 

with every imaginable peripheral, including USB, TCP/IP, and Wi-Fi, and some 

microcontrollers now even have an internal cache. This dramatic explosion of capability 

and complexity has left the embedded software developer scrambling to understand 

how to do the following:

•	 Shorten time to market

•	 Keep budgets under control

•	 Get to market on time

•	 Manage their system’s complexity

•	 Meet the client’s feature and innovation needs

Traditionally, many embedded systems were written in such a way that the code was 

used once, on a single platform, and then tossed out. Software, for the most part, could 

be referred to as spaghetti code and did not follow any object-oriented or software-reuse 

model. In today’s development environment, developers need to write their software 

with reusability and portability in mind. The teams that are the most successful can 

leverage existing intellectual property and quickly innovate on it.

The purpose of this book is to help the embedded software engineer learn and 

understand how they can develop reusable firmware that can be used across multiple 

microcontroller platforms and software products. The fundamental pieces to firmware 

reuse that we will be focusing on are HALs, APIs, and drivers. These are the core pieces 

that will allow us to develop a layered software architecture and define how those 

different layers interact with each other.

Chapters 1 through 5 lay the foundation on which a developer can start writing 

reusable firmware. In these chapters, we examine the C constructs that best lend 

themselves to portability and define what a hardware abstraction layer (HAL) is and 
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how it differs from application programming interfaces (APIs). We will discuss different 

design methodologies developers can use to write low-level drivers and examine 

the design patterns, along with their pros and cons. Along the way, we’ll look at real-

world examples and even take a chapter to discuss how reusable firmware should be 

documented.

With the foundation laid, Chapters 6 through 10 examine the processes that can be 

followed to create HALs and APIs. We examine common elements, such as GPIO, SPI, 

and external memory devices, before moving on to looking at high-level application 

frameworks that can aid reuse and accelerate software design.

Chapter 11 discusses how developers should develop tests to ensure that their 

reusable software remains usable with a minimal bug count. Finally, Chapter 12 walks 

developers through how they can start developing reusable software no matter the 

environment or challenges that they may be facing and how they can succeed in those 

environments.

The chapters don’t necessarily need to be read in order, but they are put together in 

an order that builds upon what came before. A developer with reasonable experience 

developing reusable software could easily skip around whereas developers new to 

writing reusable software should read the chapters in order.

Introduction
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CHAPTER 1

Concepts for Developing 
Portable Firmware

“A good scientist is a person with original ideas. A good engineer is a person 
who makes a design that works with as few original ideas as possible.”

—Freeman Dyson

�Why Code Reuse Matters
Over the past several decades, embedded systems have steadily increased in complexity. 

The internet’s birth has only accelerated the process as our society has been in a race to 

connect nearly every device imaginable. Systems that were once simple and stand-alone 

must now connect through the internet in a secure and fail-safe manner in order to 

stream critical information up into the cloud. Complexity and features are increasing at 

an exponential rate, with each device generation forcing engineers to reevaluate how to 

successfully develop embedded software within the allotted time frame and budget.

The increased demand for product features, along with the need to connect systems 

to the internet, has dramatically increased the amount of software that needs to be 

developed to launch a product. While software complexity and features have been 

increasing, the time available to develop a product has for the most part remained 

constant, with a negligible increase in development time (two weeks in five years), as can 

be seen in Figure 1-1. In order to meet project timelines, developers are forced to either 

purchase commercial off-the-shelf (COTS) software that can decrease their development 

time or reuse as much code as possible from previous projects.
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Firmware for microcontrollers has conventionally been developed for a specific 

application using functional design methodologies (if any methodology has been 

used at all) that typically tie the low-level hardware directly into the application code, 

making the software difficult if not impossible to reuse and port on the same hardware 

architectures let alone reuse on a different architecture. The primary driving factor 

behind developing throw-away firmware has been the resource-constrained nature 

many embedded products exhibit. Microcontrollers with RAM greater than a few 

kilobytes and flash sizes greater than 16 kB were once expensive and could not be 

designed into a product without destroying any hope of making a profit. Embedded-

software developers did not have large memories or powerful processors to work with, 

which prevented modern software-design techniques from being used in application 

development.

Modern microcontrollers are beginning to change the game. A typical low-end ARM 

Cortex-M microcontroller now costs just a few U.S. dollars and offers at a minimum 16 

kB of RAM and 64 kB of flash. The dramatic cost decreases in memory, larger memory 

availability, and more efficient CPU architectures are removing the resource-constrained 

nature that firmware developers have been stuck with. The result is that developers 

Figure 1-1.  Average firmware project development time (in months)1

1�Embedded Marketing Study, 2009 – 2015, UBM
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can now start utilizing design methods that decouple the application code from the 

hardware and allow a radical increase in code reuse.

�Portable Firmware
Firmware developed today is written in a rather archaic manner. Each product-

development cycle results in limited to no code reuse, with reinvention being a major 

theme among development teams. A simple example is when development teams refuse 

to use an available real-time operating system (RTOS) and instead develop their own 

in-house scheduler. Beyond wanting to build their own custom scheduler, there are two 

primary examples that demonstrate the issue with reinvention.

SOFTWARE TERMINOLOGY

Portable firmware is embedded software that is designed to run on more than one 

microcontroller or processor architecture with little or no modification.

First, nearly every development team writes their own drivers because 

microcontroller vendors provide only example code and not production-ready drivers. 

Examples provide a great jump-start to understanding the microcontroller peripherals, 

but it still requires a significant time investment to get a production-intent system. 

There could be a hundred companies using the exact same microcontroller, and each 

and every one will waste as much as 30 percent or more of their total development time 

getting their microcontroller drivers written and integrated with their middleware! I 

have seen this happen repeatedly among my client base and have heard numerous 

corroborating stories from the hundreds of engineers I interact with on a yearly basis.

Second, there are so many features that need to be packed into a product, and with 

a typical design cycle being twelve months,1 developers don’t take the time to properly 

architect their systems for reuse. High-level application code becomes tightly coupled 

to low-level microcontroller code, which makes separating, reusing, or porting the 

application code costly, time consuming, and buggy. The end result—developers just 

start from scratch every time.
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In order to keep up with the rapid development pace in today’s design cycles, 

developers need to be highly skilled in developing portable firmware. Portable firmware 

is embedded software that is designed to run on more than one microcontroller or 

processor architecture with little to no modification. Writing firmware that can be ported 

from one microcontroller architecture to the next has many direct advantages, such as:

•	 Decreasing time to market by not having to reinvent the wheel  

(which can be time consuming)

•	 Decreasing project costs by leveraging existing components and 

libraries

•	 Improving product quality through use of proven and continuously 

tested software

Portable firmware also has several indirect advantages that many teams overlook but 

that can far outweigh the direct benefits, such as:

•	 More time in the development cycle to focus on product innovation 

and differentiation

•	 Decreased team stress levels due to limiting how much total code 

needs to be developed (happy, relaxed engineers are more innovative 

and efficient)

•	 Organized and well-documented code that can make porting and 

maintenance easier and more cost effective

Using portable and reusable code can result in some very fast and amazing results, as 

seen in the case study “Firmware Development for a Smart Solar Panel,” but there are also 

a few disadvantages. The disadvantages are related to upfront time and effort, such as:

•	 The software architecture’s needing to be well thought through

•	 Understanding potential architectural differences between 

microcontrollers

•	 Developing regression tests to ensure porting is successful
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•	 Selecting real-time languages and understanding their 

interoperability or lack thereof

•	 Having experienced and high-skilled engineers available to develop a 

portable and scalable architecture

For development teams to successfully enjoy the benefits of portable code use, 

extra time and money needs to be spent up-front. However, after the initial investment, 

development cycles have a jump-start to potentially decrease development time by 

months versus the traditional embedded-software design cycle. The long-term benefits 

and cost savings usually overshadow the up-front design costs, along with the potential 

to speed up the development schedule.

Developing firmware with the intent to reuse also means that developers may 

be stuck with a single programming language. How does one choose a language for 

software that may stick around for a decade or longer? Using a single programming 

language is not a major concern in embedded-software development, despite what one 

might initially think. The most popular embedded language, ANSI-C, was developed in 

1972 and has proven to be nearly impossible to usurp. Figure 1-2 shows the popularity 

of programming languages used in embedded systems. Despite advances in computer 

science and the development of object-oriented programming languages, C has 

remained very popular as a general language and is heavily entrenched in embedded 

software.
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The C programming language’s popularity and steady use doesn’t appear to 

be changing anytime soon. When and if the Internet of Things (IoT) begins to gain 

momentum, C may even begin to grow in its use and popularity as millions of devices 

are developed and deployed using it. Developing portable and reusable software 

becomes a viable option when one considers the steady and near-constant use that 

the C language has enjoyed in the industry for developing embedded systems. When 

a development team considers the timelines, feature needs, and limited budgets for 

the product-development cycle, developing portable code should be considered a 

mandatory requirement.

C C++ Assembly Python Java Matlab Other

Figure 1-2.  Embedded-software programming language use2

2�Aspencore Embedded Systems Survey, 2017, www.embedded.com

Chapter 1  Concepts for Developing Portable Firmware



7

CASE STUDY—FIRMWARE FOR A SMART SOLAR PANEL

When it comes to product development, the single constant in the universe is that the 

development either needs to be done yesterday or by some not-so-distant future date.  

A few years ago, on December 1, I received a call from a prospective client I had been talking 

with for the better part of the year. The client, a start-up in the small satellite industry, had 

just received news that they had an opportunity to fly their new flagship spacecraft on an 

upcoming launch. The problem was that they had just six weeks to finish building, testing, and 

delivering their satellite!

One of the many hurdles they faced was that their smart solar panels (smart because they 

contained a plethora of sensors critical to stabilizing the spacecraft) didn't have a single line 

of firmware written. The solar panels’ firmware had to be completed by January 1, leaving just 

four weeks over a holiday month to design, implement, test, and deploy the firmware.

To give some quantification to the project scope, the following are some of the software 

components that needed to be included:

•	 GPIO, SPI, I2C, PWM, UART, Flash, ADC

•	 Timer and system tick

•	 H-bridge control

•	 Task scheduler

•	 Accelerometer

•	 Magnetometer

•	 Calibration algorithms

•	 Fault recovery

•	 Health and wellness monitoring

•	 Flight computer communication protocol

An experienced developer knows the preceding list would be impossible to successfully 

complete in four weeks from scratch. I2C alone could take two weeks to develop, and the 

realistic delivery date for the project would be three to four months, not weeks.
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I accepted the project and leveraged the very same HAL and driver techniques presented in 

this book to complete the project. A day was spent pulling in existing drivers and making minor 

modifications for the microcontroller derivative. The second week was spent pulling together 

the application code and remaining drivers. Finally, week three was test, debug, and deliver—

just in time for Christmas and to the client’s delight.

The decision to develop portable firmware should not be taken lightly. In order 

to develop truly portable and reusable firmware, there are a few characteristics that a 

developer should review and make sure that the firmware will exhibit. First, the software 

needs to be modular. Writing an application that exists in a single source file is not an 

option (yes, I still see this done even in 2016). The software needs to be broken up into 

manageable pieces with minimal dependencies between modules and similar functions 

being grouped together.

10 QUALITIES OF PORTABLE FIRMWARE

Portable Firmware …

	1.	 is modular

	2.	 is loosely coupled

	3.	 has high cohesion

	4.	 is ANSI-C compliant

	5.	 has a clean interface

	6.	 has a hardware abstraction layer (HAL)

	7.	 is readable and maintainable

	8.	 is simple

	9.	 uses encapsulation and abstract data types

	10.	 is well documented

Portable software should follow the ANSI-C programming language standard. 

Developers should avoid using compiler intrinsics and C extensions, because they are 

compiler specific and will not easily port between tool chains. In addition to avoiding 
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these add-ons, developers should select a safe and fully specified subset for the C 

programming language. Industry-accepted standards such as MISRA-C or Secure C 

might be good options to help ensure that the firmware will use safe constructs.

Developers will want to make sure that the reusable code is also well documented 

and contains detailed examples. The firmware needs to have a clean interface that is 

simple and easy to understand. Most important, developers will want to make sure that 

a simple, scalable hardware-abstraction layer is included in the software architecture. 

The hardware-abstraction layer will define how application code interacts with the 

lower underlying hardware. Let’s examine in greater detail a few key characteristics that 

portable firmware should exhibit before diving into hardware-abstraction layers.

�Modularity
On more than one occasion over the last several years, I have worked with a client whose 

entire application, 50,000-plus lines of code, was contained within a single main.c 

module. Attempts to maintain the software or reuse pieces of code quickly turned into 

a nightmare. These applications were still using software techniques from back in the 

1970s and 1980s, which was not working out so well for my client.

Modularity emphasizes that a program’s functionality should be separated into 

independent modules that may be interchangeable. Each module contains a header 

and source file with the ability to execute specialized system functions that are exposed 

through the module’s interface. The primary benefit of employing modularity in an 

embedded system is that the program is broken up into smaller pieces that are organized 

based on purpose and function.

Ignoring the preceding facts and lumping large amounts of code into a single 

module, even if it is well organized or makes sense in the beginning, usually results in 

a decay into a chaos and a software architecture that resembles spaghetti. Breaking 

a program up into separate modules is so important when developing portable and 

reusable firmware because the independence each module exhibits allows it to be easily 

moved from one application to the next, or in some cases even from one platform to the 

next. There are a few advantages associated with breaking a program up into modular 

pieces, such as:

•	 Being able to find functions or code of interest very quickly and easily

•	 Improved software understanding through the modules’ organization
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•	 The ability to copy modules and use them in new applications

•	 The ability to remove modules from a program and replace them with 

new functionality

•	 Easing requirements’ traceability

•	 Developing automated regression testing for individual modules and 

features

•	 Overall decreased time to market and development costs

Each module added to a program does come with the disadvantage that the 

compiler will need to open, process, compile, and close the module. The result in the 

“old days” would have been slower compilation times. Development machines today 

are so fast and efficient that increased compile time is no longer an excuse for writing 

bulking, clunky code.

�Module Coupling and Cohesion
Breaking a program up into smaller, more manageable pieces is a good step forward 

toward developing portable firmware, but it is only the first step. For a module to be truly 

portable, it must exhibit low coupling to other modules within the code base and a high 

level of cohesion. Coupling refers to how closely related different modules or classes are 

to each other and the degree to which they are interdependent. The higher the coupling, 

the less independent the module is.

Portable software should minimize the coupling between modules to make it 

easier to use in more than one development environment. Take, for example, the file-

dependency chart in Figure 1-3. Attempting to bring the top-level module into the code 

base will be a small nightmare, like peeling an onion. The top module will be brought in, 

only for the developer to realize that it is dependent upon another, which is dependent 

upon another and another and so on. In short order, the developer might as well have 

just brought in the entire application or simply started from scratch. Attempting to 

use modules that are tightly coupled is very frustrating and can cause the code size to 

balloon out of control if care is not taken.
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The software base in Figure 1-3a shows a completely different story. The modules in 

Figure 1-3b are loosely coupled. A developer attempting to bring in a top-level module won’t 

be fraught with continuous compiler errors of missing files or spend hours on end trying to 

track down all the dependencies. Instead, the developer quickly moves the loosely coupled 

module into the new code base and is on to the next task with little to no frustration. Low 

coupling is the result of a well-thought-out and well-structured software design.

SOFTWARE TERMINOLOGY

Coupling refers to how closely related different modules or classes are to each other and the 

degree to which they are interdependent.

Cohesion refers to the degree to which module elements belong together.

Module coupling is only the story’s first part. Having low module coupling doesn’t 

guarantee that the software will exhibit easily portable traits. The goal is to have a module 

that has low coupling and high cohesion. Cohesion refers to the degree to which the 

module elements belong together. In a microcontroller environment, a low-cohesion 

example would be lumping every microcontroller peripheral function into a single module. 

The module would be large and unwieldy. The microcontroller peripheral functions 

could instead be broken up into separate modules, each with functions specific to one 

peripheral. The results would be the benefits listed in the previous section on modularity.

Figure 1-3.  Module coupling
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Portable and reusable software attempts to create modules that are loosely coupled 

and have high cohesion. Modules with these characteristics are usually easy to reuse and 

maintain. Consider what would happen in a tightly coupled system if a single module 

were changed. A single change would result in changes being forced in at least one other 

module, if not more, and it could be time consuming to hunt down all the necessary 

changes. Failure to make the change or a simple oversight could result in a bug, which in 

the worst case could cause project delays and increased costs.

�Following a Standard
Creating firmware that is portable and reusable can be challenging. For example, the C 

language has gone through several different standard revisions: C90, C99, and C11. In 

addition to the different C versions, there also exist non-standard language extensions, 

compiler additions, and even language offshoots. To develop firmware that is reusable 

to the greatest extent possible, a development team needs to select a widely accepted 

standard version, such as C90 or C99. The C99 version has some great additions that 

make it a good choice for developers. At the time of this writing, there is limited support 

for C11 in firmware development, and C11 is five years old! Adopting C99 is the best bet 

for following a standard.

The long-term support for C and its general-purpose use has resulted in language 

extensions and non-standard versions that need to be avoided. Using any construct 

that is not in the standard will result in specialized modifications to the code base that 

can obfuscate the code. Sometimes using extensions or an intrinsic is unavoidable due 

to optimization needs, but we will discuss later how we can still write portable code in 

these circumstances.

In addition to using the C standard, developers should also restrict their use to well-

defined constructs that are easy to understand and maintain and are fully specified. For 

example, standards such as MISRA-C and Secure-C exist to provide recommendations 

on a C subset and they should be used to develop firmware. MISRA-C was developed for 

the automotive industry, but the recommendations have proven to be so successful at 

producing quality software that other industries are adopting the recommendations.

Developers should not view a standard as a restriction but instead as a method for 

improving the quality and portability of the firmware that they develop. Identifying and 

following standard C dialects will take developers a long way in developing reusable 
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firmware. Recognizing the need to follow the ANSI-C standard and having the discipline 

to follow it will guide a development team toward creating embedded software that can 

be reused for years to come.

�Portability Issues in C—Data Types
The most infamous and well-known portability issues in the C programming language 

are related to defining the most commonly used data type, the integer. One needs only 

to ask a simple question to demonstrate a potential portability issue: What will be the 

value LoopCount contains when i rolls over to 0? The demonstration code that contains 

LoopCount can be found in in Figure 1-4.

Figure 1-4.  Integer rollover test

The answer could be 65,535 or 4,294,967,295. Both answers could be correct. The 

reason is that the storage size for an integer is not defined within the ANSI-C standard. 

The compiler vendors have the choice to define the storage size for the variable based on 

what they deem will be the most efficient and/or appropriate.

The storage size for an integer normally wouldn’t seem like a big deal. For a code 

base an int will be an int, so who cares? The problem surfaces when that same code 

is compiled using a different compiler. Will the other compiler store the variable as the 

same size or different? What happens if it was stored as four bytes and now is only two? 

Perfectly working software is now buggy!

The portability issues arising from integers, the most commonly used data type, are 

solved in a relatively simplistic way. The library header file stdint.h defines fixed-width 

integers. A fixed-width integer is a data type that is based on the number of bits required 

to store the data. For example, a variable that needs to store unsigned data that is 32 bits 
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wide doesn’t need to gamble on int being 32 bits, but instead a developer can simply 

use the data type uint32_t. Fixed-width integers exist for 8, 16, 32, and in some cases 

even 64 bits. Table 1-1 shows a list of the different fixed-width integer definitions that can 

be found in stdint.h.

Table 1-1.  Fixed-Width Integers3

Data Type Minimum Value Maximum Value

int8_t -128 127

uint8_t 0 255

int16_t -32,768 32,767

uint16_t 0 65535

int32_t -2,147,483,648 2,147,483,647

uint32_t 0 4,294,967,295

The library file stdint.h doesn’t contain just the data types found in Table 1-1 but 

also a few interesting and less-known gems. Take, for example, uint_fastN_t, which 

defines a variable that is the fastest to process at least N bits wide. A developer can 

tell the compiler that the data must be at least 16 bits but could be 32 bits if it can be 

processed faster using a larger data type. Another great example is uintmax_t, which 

defines the largest fixed-width integer possible on the system. A personal favorite is 

uintptr_t, which defines a type that is wide enough to store the value of a pointer.

Using stdint.h is an easy way to help ensure that embedded-software integer types 

preserve their storage size no matter which compiler the code may be compiled on. It is 

a simple and safe way to ensure that integer data types are properly preserved.

�Portability Issues in C—Structures and Unions
The C standards have some unfortunate ambiguities in the definition of certain language 

constructs; take, for example, structures and unions. A developer can declare a structure 

containing three members, x, y, and z, as shown in Figure 1-5. As one might expect, 

3�ISO/IEC 9899:1999, C Language Specification
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when a variable is declared of type Axis_t, the data members will be created in the order 

x, y, and z in memory. However, the C standard does not specify how the data members 

will be byte aligned. The compiler has the option to align the data members in any way 

that it chooses. The result could be that x, y, and z occupy contiguous memory, or there 

could be padding bytes added between the data members that space the members 

by two, four, or some other byte value that would be completely unexpected by a 

programmer.

Figure 1-5.  Structure definition

The unspecified structure and union behavior makes it the developer’s job when 

porting the firmware to understand how the structure is being defined in memory and 

whether the structure is being used in such a way that adding padding bytes could affect 

the application’s behavior or performance. The structure could include padding bytes 

or even holes depending on the data type being defined and how the compiler vendor 

decided to handle the byte alignment.

�Portability Issues in C—Bit Fields
The situation with structures gets even worse when it comes to the definition of bit fields. 

Bit fields are declared within a structure and are meant to allow a developer to save 

memory space by tightly packing data members that don’t occupy an entire data space. 

An example of using bit fields is to declare a flag within a structure that has a true or false 

value, as shown in Figure 1-6.
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The problem with bit fields is that the implementation is completely undefined by 

the standard. The compiler implementers get to decide how the bit field will be stored 

in memory, including byte alignment and whether the bit field can cross a memory 

boundary. Another problem with bit fields is that while they may appear to save 

memory, the resulting code required to access the bit field may be large and slow, which 

can affect the real-time performance of accessing it. The general recommendation when 

it comes to bit fields is that they are non-portable and compiler dependent and should 

be avoided for use in firmware that is meant to be reusable and portable.

�Portability Issues in C—Preprocessor Directives
All preprocessor directives are not created equal. A developer will have different 

preprocessor directives available depending on whether GNU C, IAR Embedded 

Workbench, Keil uVision, or any other compiler is used. ANSI-C has a limited number 

of preprocessor directives that are included in the standard and can be considered 

portable.

Compiler vendors have the ability to add preprocessor directives that are not part of 

the standard. For example, #warning is a commonly used preprocessor directive that is 

not supported by C90 or C99! The #error preprocessor directive is part of the standard, 

and #warning was added by compiler vendors to allow a developer to raise a compilation 

warning. Developers who rely heavily on #warning may port code to a compiler that 

doesn’t recognize #warning as a valid preprocessor directive or may recognize it as 

having a different purpose!

Figure 1-6.  Bit field definition
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A developer interested in writing portable code needs to be careful about which 

preprocessor directives are used within the embedded software. The most obvious non-

portable preprocessor directive is #pragma, which can generally be considered to declare 

implementation-defined behaviors within an application. The use of #pragma should be 

avoided as much as possible within an application that is expected to be ported to other 

tool chains.

Using #pragma or other specialized preprocessor directives and attributes cannot 

always be avoided without dramatically increasing code complexity and structure. One 

example where #pragma may be necessary is to specify an optimization that should 

be performed on an area of code. A developer in a similar situation can use compiler-

predefined macros and conditional compilation to ensure that the code is optimized 

and that if it is ever ported to another compiler an error is raised at compile time. Each 

compiler has its own set of predefined macros, including a macro that can be used to 

identify the compiler that is in use. Figure 1-7 shows an example of a compiler-defined 

macro that may be of interest to a developer.

Figure 1-7.  Compiler-defined macros

The predefined macros from Figure 1-7 that identify the compiler can be used as part 

of a preprocessor directive to conditionally compile code. Each compiler that may be 

used can then be added to the conditional statement with the non-portable preprocessor 

directive that is needed for the task at hand. Figure 1-8 shows how a developer might 

take advantage of the predefined compiler macros to conditionally compile a fictitious 

#pragma statement into a code base.
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Developers interested in writing portable ANSI-C code should consult the ANSI-C 

standard, such as C90, C99, or C11, and check the appendices for implementation-

defined behaviors. A developer may also want to consult their compiler manuals to 

determine the extensions and attributes that are available to developers.

�Embedded-Software Architecture
Firmware development in the early days used truly resource-constrained 

microcontrollers. Every single bit had to be squeezed from both code and data memory 

spaces. Software reusability was a minor concern, and programs were monolithically 

developed. The programs would be one giant 50,000-line program, all contained within 

a single module, with little to no thought given to architectural design or reuse. The only 

goal was to make the software work. Thankfully, times have changed, and while many 

microcontroller applications remain “resource constrained,” compiler capabilities and 

decreasing memory costs now allow for a software architecture that encourages reuse.

Developing software that is complex, scalable, portable, and reusable requires a 

software architecture. A software architecture is the fundamental organization a system 

embodies in its components, their relationship to each other and to the environment, 

and the principles guiding its design and evolution.4 In other words, a software 

architecture is the blueprint from which a developer implements software. A software 

architecture is literally analogous to the blueprint an architect would use to design a 

building or a bridge.

Figure 1-8.  Using conditional compilation for non-portable constructs

4�ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture
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The software architecture provides a developer with each component and major 

software structure, supplies constraints on their performance, and identifies their 

dependencies and interactions (the inputs and outputs). For our purposes, we will only 

be looking at software architecture from the perspective of organizing firmware into 

separate software layers that have contractually specified interfaces to improve portability 

and code reuse. Each software has a specific function, such as directly controlling the 

microcontroller hardware, running middleware, or containing the system’s application 

code. Properly architected software can provide developers with many advantages.

First, a layered architecture can provide a functional boundary between different 

components within the software. Take, for example, low-level driver code that makes the 

microcontroller work. Including driver code directly within the application code tightly 

couples the microcontroller to the application code. Since application code normally 

contains algorithms that may be used across multiple products, mixing in low-level 

microcontroller code will make it difficult and time consuming to reuse the code. Instead, 

a developer who architects layered software can separate the application and low-level 

code, allowing both layers to be reused in other applications or on different hardware.

Second, a layered architecture hints at the locations where interfaces within the 

software need to be created. For a development team to create firmware that can be 

reused, there needs to be an identifiable boundary where an interface can be created 

that remains consistent and unchanging as time passes. The interface contains 

declarations and function prototypes for controlling software in lower layers.

Third, a layered architecture allows information within the application to be hidden 

from other areas that may not need access to it. Consider the example with the low-level 

driver. Does the application code really need to know the implementation details for 

how the driver works? Surely, someone working at the application level would rather 

have a simple function to call, with the desired result happening behind the scenes. 

This is the idea behind abstractions, which hide the implementation behavior from the 

programmer and simply provide them with a black box. Developing a simple software 

architecture can help developers take advantage of these benefits.

Developers looking to create portable firmware that follows a layered software-

architecture model have many different possible models that can be chosen from and 

many custom hybrid models that they could undoubtedly develop. The simplest layered 

architecture can be seen in Figure 1-9 and contains a driver and application layer 

operating on the hardware. The driver layer includes all the code necessary to get the 

microcontroller and any other associated board hardware, such as sensors, buttons, and 

so forth, running. The application code contains no driver code but has access to the 
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low-level hardware through a driver-layer interface that hides the hardware details from 

the application developer but still allows them to perform useful functions.

Figure 1-10.  Three-layer embedded-software architecture

Figure 1-9.  Two-layer embedded-software architecture

The next model that a developer could choose to implement breaks the software 

up into three layers, similar to Figure 1-10. In a three-layer model, the driver and 

application layers still exist, but a third “middle” layer has been added. The middle layer 

may contain software such as a real-time operating system (RTOS), USB and/or Ethernet 

stacks, along with file systems. The middle layer contains software that isn’t directly the 

end application code but also does not drive the low-level hardware. For this reason, 

components in this layer are often referred to as middleware.

Beyond the three-layer model, developers may find it worthwhile to start breaking 

the software up into more refined layers of operation and maybe even provide pathways 

for high-level layers to circumvent layers and get direct access into lower software layers. 

The architectures can become quite complex and are well beyond the scope of this 

book. For now, a four-layer model will be as complex an example as we will examine. 

For example, a developer may decide that the board-support package—the integrated 

circuits outside of the microcontroller—should be separated from the microcontroller 

driver layer. The board-support drivers are usually dependent on the microcontroller 

drivers anyway, and in order to improve portability probably should be separated. Doing 

this results in one possible four-layer model like the one shown in Figure 1-11.
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Many formal models exist for developing layered software architectures, including 

the well-known OSI model, which contains over seven layers. A developer should 

examine their requirements and their portability and reuse needs and pick the simplest 

architecture that can meet their requirements. Don’t be tempted to build a 30-layer 

software architecture if three layers will meet the requirements! The goal is to avoid 

complex spaghetti code that is intertwined and entangled and instead develop layered 

lasagna code! (Just the thought makes my stomach growl!)

�Hardware Abstraction Layers (HAL)5

Each software layer has at least one interface to an adjoining software layer. The software 

type that is contained within the next layer determines the name given to the interface. 

Each layer, if developed properly, can appear as a black box to the developer, and only 

the interface specification provides insight into how to get the needed behavior and 

result. The interface has many benefits, such as the following:

•	 Providing a consistent method for accessing features

•	 Abstracting out the details for how the underlying code works

•	 Specifying wrapper interfaces for how to merge inconsistent code to 

the software layer

The most interesting firmware layer that developers now have the ability to utilize is 

the hardware abstraction layer (HAL). A HAL is an interface that provides the application 

developer with a standard function set that can be used to access hardware functions 

Figure 1-11.  Four-layer embedded-software architecture

5�http://whatis.techtarget.com/definition/layering
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without a detailed understanding of how the hardware works. Despite being commonly 

referred to as a HAL, it is not the infamous artificial intelligence from 2001: A Space 

Odyssey, although sometimes they can be just as devious.

HALs are essentially APIs designed to interact with hardware, and a properly 

designed HAL provides developers with many benefits, such as software that

•	 is portable

•	 is reusable

•	 has a lower cost (result of reuse)

•	 is abstracted (I don’t need to know how the microcontroller does 

what it does)

•	 has fewer bugs due to repeated use

•	 is scalable (moving to other MCUs within a part family)

SOFTWARE TERMINOLOGY

Driver Layer refers to the software layer that contains low-level, microcontroller-specific 

software. The driver layer forms the basis from which higher-level software interacts with and 

controls the microcontroller.

Board-Support Package refers to driver code that is dependent upon lower-level 

microcontroller driver code. These drivers usually support external integrated circuits such as 

EEPROM or flash chips.

Middleware refers to the software layer that contains software dependent upon the lower-

lying hardware drivers but does not directly contain application code. Application code is 

usually dependent upon the software contained within this middle layer of software.

Application Layer refers to a software layer used for system- and application-specific 

purposes that is decoupled from the underlying hardware. The application code meets 

product-specific features and requirements.

Configuration Layer refers to a software layer used to configure components within the layer.

Chapter 1  Concepts for Developing Portable Firmware



23

A poorly designed HAL can result in increased costs and buggy software and can 

leave the developer wishing that they were dealing with the previously mentioned 

infamous HAL. An example software architecture that utilizes a HAL might look 

something like Figure 1-12. We will be discussing HAL design throughout the book.

Figure 1-12.  Software architecture with a HAL

6�http://whatis.techtarget.com/definition/interface

SOFTWARE TERMINOLOGY

Hardware abstraction layer (HAL) refers to a firmware layer that replaces hardware-level 

accesses with higher-level function calls.

Application programming interface (API) refers to functions, routines, and libraries that are 

used to accelerate application software development.

�Application Programming Interfaces (APIs)6

Application programming interfaces, often referred to as APIs, are a set of functions, 

routines, and libraries that are used to accelerate application software development. 

APIs are usually developed at the highest software layers. There are many cases where 

developers will use the term API to include the HAL, since the HAL is really a specialized 

API designed to interact with hardware. An example where the API might exist in a 

software stack can be seen in Figure 1-13.
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A specific application may have multiple middleware components, such as an 

RTOS, TCP/IP stack, file system, and so forth. Each component may have their very 

own API associated with their software package. There could even be application-level 

components that have their own APIs in order to facilitate speedy development. The rule 

of thumb is that wherever you see two software layers touch, there is an interface there 

that defines an API or HAL.

�Project Organization
Organizing a project can help improve both portability and maintainability. There are 

many ways that developers can organize their software, but the easiest is to attempt to 

follow the software layer stack-up. Creating a file system and project folder structure that 

matches the layers makes it easy to simply replace a folder (a layer) with new software, 

which would also include the components within that layer.

The project should also be organized in such a way within each layer that modules, 

tasks, and other relevant code are easily locatable. Some developers like to create folders 

for modules or components and keep all configuration, header, and source modules 

within the folders. Organizing the software in this way makes it very easy to add and 

remove software modules. Other developers prefer to break up and keep header and 

source files separate. The method used is not important so much as being consistent and 

following a methodology is.

Figure 1-13.  Architecture with application programming interfaces (APIs)
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The following is an example organization that a developer may decide to implement 

to organize their project:

•	 Drivers

•	 Application

•	 Task Schedulers

•	 Protocol Stacks

•	 Configuration

•	 Supporting Files and Docs

�Getting Started Writing Portable Firmware
Developers who want to reuse software have several challenges to overcome in order to 

be successful. These include:

•	 Endianness

•	 Processor architecture

•	 Bus width

•	 Ambiguous standards

•	 Development time and budget

•	 Modularity

•	 Code coupling

This is just to name a few. Getting started can be overwhelming and can lead to more 

stress and confusion than simply writing very functional code that is discarded later. The 

key to successfully developing portable code is to determine how well your firmware 

currently meets the portable software characteristics. Once we understand where we are, 

we can decide where we want to go and set in motion the steps necessary to get there.

To determine where we are today with developing portable firmware, start by 

drawing a diagram like that shown in Figure 1-14. In the diagram, label each spoke  

with a portable firmware characteristic and select the eight characteristics most 

important to you.
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In each identified category, a developer can evaluate how well their code exhibits 

these properties. For example, a developer who has been trying to transition into writing 

more portable code may evaluate themselves with a diagram result like Figure 1-15.

A quick look at Figure 1-15 can tell a developer a lot of information. First, we have 

strengths in documentation and modularity. That’s a great step toward developing 

portable firmware, and we are just getting started. The figure also shows us where our 

weaknesses are, such as code coupling and cohesion.

From this glance, we can now determine where we should focus our attention. 

Which characteristic, if improved by just a couple points, will most drastically improve 

our code? Let’s choose code coupling as an example. If a developer is going to improve 

code coupling, they need to determine how they are going to go about making that 

improvement. They might decide that the best way to do this is to do one or more of the 

following:

•	 Schedule code reviews

•	 Find a tool that can provide a module-dependency graph

•	 Use the dependency-graph tool (just because we have a tool doesn’t 

mean we have the discipline to use it)

•	 Develop a high-level architecture that considers module coupling

Figure 1-14.  Portable code evaluation
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Figure 1-15.  Evaluated firmware characteristics

A developer may decide that improving in one area is good enough to start or that all 

need to be done. The point is that we aren’t going to start writing perfect, reusable code 

overnight. The process is iterative and may take a few years before all the rough edges are 

smoothed, but that is okay.

The following is a simple process that developers can use to improve their firmware 

portability:

	 1.	 Analyze their code characteristics.

	 2.	 Identify strengths and weaknesses.

	 3.	 Determine which characteristic to improve in the next three 

months.

	 4.	 Identify what can be done to make the incremental improvement.

	 5.	 Implement the improvement.

	 6.	 After the specified period, repeat.
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�Going Further
Reading about portable and reusable code is one thing; actually doing it is a completely 

different story. The following are some suggestions on steps you can take to start 

developing firmware that is more portable:

•	 Select the language standard that will be used for your development 

effort(s) and spend 30 minutes each day reading through the 

language standard. Note areas that are not fully defined or could 

become pain points.

•	 Select two or three compilers, such as GCC, Keil, and IAR. Download 

their user manuals and review the documentation on how they 

implemented the ambiguous areas in the selected standard.

•	 Purchase a copy of MISRA C/C++ and become familiar with the 

recommended best practices.

•	 Develop your own coding standard on the constructs that are allowed 

within an application and how compiler intrinsics and extensions 

should be handled.

•	 Review your typical software architecture. Does it have well-defined 

layers? Does each layer have a well-defined interface? If not, now is 

the perfect time to spend a few minutes architecting your firmware 

stack-up. (Don’t be concerned with defining the interface just yet. 

We’ll be covering how to do this in the coming chapters.)

•	 Review the last section on “Getting Started Writing Portable 

Firmware.” On a sheet of paper, draw your own spider diagram 

and rank how well your code exhibits the portable-firmware 

characteristics. Select one or two characteristics that you feel will 

have the biggest impact on your code and focus on improving those. 

Periodically review and reevaluate.
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CHAPTER 2

API and HAL 
Fundamentals

“Software is a great combination between artistry and engineering.”

—Bill Gates

�The Wonderful World of HALs
There are many tools that embedded-software developers can use to develop software 

consistently, but the greatest tools available to improve code reuse and portability are 

APIs and HALs. Designing a HAL is a great first step toward developing firmware that is 

reusable and hardware independent. The HAL, or hardware abstraction layer, provides 

the application developer with a standard function set that can be used to access 

hardware functions without a detailed understanding of how the underlying hardware 

works. A HAL is not the infamous artificial intelligence from 2001: A Space Odyssey. 

HALs are essentially APIs designed to interact with hardware rather than to provide 

high-level program blocks that ease application development. A properly designed HAL 

provides developers with many benefits, such as code that is portable, reusable, lower 

cost, abstracted, and potentially with fewer bugs. A poorly designed HAL can result in 

increased costs and buggy software and can leave the developer wishing that they were 

dealing with the previously mentioned infamous HAL.
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�APIs Versus HALs
Traditionally, embedded-software developers have done a poor job developing software 

that can be easily reused and ported. The reason is not necessarily the developers’ fault 

but rather has its roots in the fact that the available hardware has been very resource 

constrained, compiled code wasn’t the most efficient, and project pressures result 

in software being developed in a hurry. For these reasons, most embedded-software 

projects start out with a clean slate with little code being reused.

A major barrier to creating reusable software has been the very technologies that 

developers are using, along with the microcontroller itself being a big culprit. Two major 

factors for skipping APIs and HALs have been the fact that they can add a little overhead 

because of function calls and that code space can creep up slightly. When flash memory 

was expensive, a little code bloat could easily cause a significant increase in hardware 

costs. Developers also considered using HALs to be a waste because the variability in 

capabilities and low-level register and memory-map layouts make reuse appear very 

difficult.

Embedded-software development needs in the twenty-first century are driving major 

changes to the way software is developed. Hardware capabilities have dramatically 

increased while costs have fallen significantly. The major project costs are no longer with 

the hardware design and manufacturing but instead in the software development. These 

factors are driving the need to reuse embedded software.

Embedded software can be easily developed that is reused from one application to 

the next and even from an 8-bit microcontroller to a 32-bit microcontroller. Computer 

scientists solved porting or reusing software many decades ago. Desktop programmers 

have taken advantage of frameworks and components since the dawn of the personal 

computer (if not earlier). One of the most important tools that embedded-system 

developers have tended to neglect is the use of an API or a HAL.

An API is an application programming interface that defines a set of routines, 

protocols, and tools for creating an application.1 An API defines the high-level interface 

of the behavior and capabilities of the component and its inputs and outputs. An API 

should be created so that it is generic and implementation independent. This allows 

the API to be used in multiple applications with changes being made only to the API 

implementation and not to the general interface or behavior.

1�http://www.webopedia.com/TERM/A/API.html

Chapter 2  API and HAL Fundamentals

http://www.webopedia.com/TERM/A/API.html


31

A HAL is a hardware abstraction layer that defines a set of routines, protocols, and 

tools for interacting with the hardware. A HAL is focused on creating abstract, high-

level functions that can be used to make the hardware do something without requiring 

detailed knowledge of how the hardware is doing it. A HAL can come in extremely handy 

for developers who work with multiple microcontroller hardware types and need to port 

applications from one platform to the next.

APIs and HALs are related. It could be argued that they do nearly the same thing. 

The difference is that an API is designed to make application software easier while a HAL 

is designed to make interacting with low-level hardware easier. An embedded system 

that is well designed would have both a HAL to interact with the low-level hardware 

and an API that interacts with the HAL to produce a set of APIs that simplify application 

development.

�The API and HAL Landscape
As microprocessor capabilities have increased in recent years, the technical expertise 

required and the time necessary to get a microcontroller up and running have also been 

increasing dramatically. Setting up a simple UART can require days as one digs through 

thousands of pages of technical documents to figure out exactly which registers and bits 

need to be manipulated to establish basic serial communication with an embedded 

system. Given the pressure on many development teams to deliver faster and at lower 

costs, providing a HAL and an API can be a huge advantage.

Nearly every microcontroller manufacturer now has an API set that goes with their 

microcontroller. Beyond just the microcontroller manufacturers’ APIs (and in many 

cases the terms API and HAL are used synonymously), there exist several APIs that 

embedded-systems developers can leverage that are attempting to be industry standards 

but differ drastically in their capabilities and the engineer type that they are targeting. In 

many cases, the APIs, HALs, components, and frameworks are referred to as a platform.

SOFTWARE TERMINOLOGY

Platform is a collection of APIs, HALs, modules, components, libraries, and frameworks 

designed to work together to speed up embedded-software development and decrease project 

costs.
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The first, and probably the most famously known, are the Arduino APIs.2 Every 

Arduino board can use common software components and function calls from 

the Arduino software library on any Arduino-based board. Arduino provides huge 

flexibility in hardware use, and most developers using Arduino know little to nothing 

about microcontrollers and sometimes even programming. These libraries provide an 

excellent way for non-computer-programming folks to create functional applications. 

The problem is that the API is targeted toward rapid prototyping and the maker 

community and lacks a professional touch that would be easy to use in a professional 

development environment.

Another well-known API example is ARM’s mbed platform. Mbed is like Arduino 

in that it provides a common set of software features and functions that can be used to 

develop software quickly with little knowledge of the underlying hardware. Professional 

developers, though, will once again struggle with the fact that this platform is not 

designed to be production intent and lacks important underlying error handling 

and software analysis features that would be associated with a production-intent 

product. Lacking these important tools and capabilities once again make mbed a great 

prototyping platform but not a production-intent system. (There have been massive 

efforts under way to fill in these gaps and make mbed a fully production-intent platform 

that includes an RTOS).3

Beyond Arduino and mbed, there are professional production-intent standards that 

developers can leverage to develop their embedded software and improve its reusability 

and portability. A great example is AUTOSAR, which is used in the automotive industry. 

AUTOSAR provides a great HAL for interacting with the low-level hardware. The problem 

is that AUTOSAR is a bit convoluted and expensive to use as far as processing power goes 

and doesn’t play well on resource-constrained microcontroller systems running under 

200 MHz.

Unfortunately, a generic, industry-wide accepted standard does not exist for 

microcontroller-based systems. ARM has attempted to create standards through their 

CMSIS and mbed offerings, but in most cases these can only cover a standard way for 

interacting with the microcontroller core and not with the entire microcontroller. Every 

microcontroller manufacturer still has their own peripherals and other intellectual 

property that are designed to be key differentiators and differ from competitor offerings. 

2�https://www.arduino.cc/
3�https://www.mbed.com/en/
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For this reason, in many cases these “industry standards” fail, and each vendor is now 

producing their own unique and custom standard.

�The Good, Bad, and Ugly
The ability to leverage an API or HAL that a microcontroller vendor has created can 

offer many advantages. The microcontroller manufacturer is the expert in how their part 

works, so it only makes sense that they have the necessary knowledge to create software 

that fully utilizes and is compatible with the microcontroller at a minimal cost. Nearly 

every microcontroller manufacturer has their own API. A few choice examples to explore 

include the Renesas Synergy™ Platform, Microchip Harmony, and ST Microelectronics 

STM32CubeMX toolchain.

There are many benefits that developers can experience by using an off-the-shelf 

HAL produced by a microcontroller vendor. First, if the vendor leveraged their internal 

hardware understanding, then developers would expect the interfaces to be fast and 

to utilize all the tricks that can be used within the microcontroller itself. Second, a 

development team doesn’t need to spend months developing an API and HAL to 

interface with the microcontroller. They can get the microcontroller doing what it should 

be doing right out of the box. The ability to just use an existing API and HAL is a major 

benefit to developers, which is why microcontroller vendors have started to supply them. 

Teams can immediately start developing their application code rather than having to 

spend months diving into highly technical datasheets trying to understand how the 

microcontroller works.

Another benefit to developers is that in many instances the APIs and HALs have 

been integrated into easy-to-use development tools that include configurators to help 

ease the development burden. Engineers can select what components to include in an 

application and specify how those components should be configured from a simple 

Graphical User Interfaces (GUI). These tools vary drastically, however, in the software 

quality that is generated from the toolchain.

�Potential Issues and the Boogeyman
All APIs and HALs are not created equal. Whether a development team is using an open 

source standard or a microcontroller vendor–provided standard, or have decided to roll 

their own standard, there are a few concerns that developers need to be aware of that can 
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result in major software issues. The issues, if not considered up front, can come back to 

haunt a team, causing many sleepless nights as a result of an ill-considered boogeyman. 

These issues can include but are not limited to the following:

•	 Tied to a single toolchain

•	 Copyright infringement

•	 Execution efficiency

•	 Functionality limitations resulting from abstraction

•	 Integration issues

•	 Code bloat

•	 Readability

Microcontroller vendors have started to tie their APIs and HALs into automated 

toolchains that allow a developer to select which components they need in a project and 

easily configure them. For a developer using these toolchains, life is simplified and huge 

time and cost savings can be realized throughout the project. For some, though, it won’t 

be all blue skies. A potential issue arises when a team wants to change microcontroller 

vendors. Suddenly, all their application code is tied to the vendor’s APIs and 

functionality, which are tightly integrated together. Attempting to port that application 

code to a new API and HAL can be time consuming and costly.

This brings us to the second issue. A development team may decide that while they 

are tightly tied to the toolchain, they can easily just modify the low-level register accesses 

to use a different microcontroller and maintain the same API. The problem is that if you 

read the fine print for any vendor-supplied software, it is quite clear that the software, 

APIs, HALs, and so on are only to be used with their microcontrollers! Using them with a 

competitor’s processor is a copyright violation. The result is having to rework or rewrite 

a fair amount of software or violate the copyright and nervously wait for potential legal 

ramifications (which of course is never the right solution).

Beyond the potential business and legal ramifications of using the software that is 

provided by microcontroller vendors, there is also the question of efficiency. Code that 

is written for a very specifically defined application can be very efficient. Abstracting the 

hardware and attempting to provide hooks for every possible use and application will 

add layers to the software. The more layers there are, the more function calls that execute 

before work is performed. This means that the system latency will begin to creep up. On 
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a modern-day 32-bit microcontroller, this is not a problem; however, on an old 8-bit or 

16-bit microcontroller, this could potentially be a big deal. Developers therefore need to 

look at how the provided software is architected and take some measurements to ensure 

that the execution efficiency is acceptable.

Abstracting a peripheral is a great technique to allow application developers to 

focus on the application and not worry about the underlying hardware. The problem is 

that through abstraction, sometimes little details and functionality get lost that could 

improve execution efficiency or simplify a task. Vendors will often write their automation 

tools to cover every device even though there are slight variations. Sometimes the details 

are abstracted out with no method to access that functionality through the API and 

HAL. In a later chapter, we will discuss how developers can deal with this issue.

There are also the inevitable integration issues. Most development teams use 

a mixture of commercial and open source software. In many cases, these software 

components were not designed to work with each other or ever tested together. The 

result is time wasted debugging and integrating software that from the surface appeared 

to be compatible but proved otherwise. Sometimes developers must add additional 

wrappers or create horrible constructs to make a square peg fit into a round hole.

The inevitable result of creating additional layers and abstractions within software 

is that the code gets slightly larger and larger until it is, well, bloated. Flash has become 

relatively inexpensive, and many developers don’t worry as much today about code size 

as they did fifteen or twenty years ago. Still, it is something that needs to be considered 

by developers.

Finally, we have the potential for readability issues. When pulling in software 

vendor–supplied APIs, HALs, components, and so forth, the likelihood that they all 

used the same coding standard is rather slim. Functions and variables will use different 

naming conventions, which can be confusing and detract from the software function. 

Teams need to decide how best to deal with this, whether it’s minor modifications, just 

dealing with it, or coming up with a unique and innovative solution. One potential 

solution is to compile the third-party components into libraries and include them in 

binary form so that the source code is not available in the project. However, this can 

potentially cause issues for developers during debugging.

Additional potential issues exist, but these are the ones that developers will find 

have the greatest impact on their development efforts. Each issue needs to be carefully 

considered and weighed before diving into a development effort and selecting or 

building the API.
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�Characteristics Every HAL Should Exhibit
Just because a platform or framework provides a HAL does not mean that it is going to be 

easy to use or will improve the software. I’ve encountered many instances where the HAL 

designers went overboard in their design and abstracted the HAL so much that it would 

take weeks to make heads or tails of how the HAL was working. Those designers seemed 

to believe in obfuscation, not abstraction. So, how can developers distinguish between 

the good HALs and the bad ones? There are probably more than two dozen different 

characteristics we could examine, but there are ten key characteristics that bear the most 

weight. Before going into detail on each characteristic, the following is a summary to 

provide the reader with the roadmap for where the discussion is going:

•	 Contains a well-defined coding standard

•	 Reasonable documentation and comments

•	 Written in C99

•	 Can be complied with any modern compiler

•	 Abstracts useful hardware features

•	 Easily extensible

SOFTWARE TERMINOLOGY

Coding standards contain a set of programming rules, naming conventions, and layout 

specifications that provide a consistent software.4

•	  Modular and adaptable

•	 Deterministic and well-understood behavior

•	 Error handling and diagnostic capabilities

•	 Integrated regression testing

With this preview in mind, let’s now examine the characteristics in greater detail.

4�http://www.decision-making-confidence.com/kepner-tregoe-decision-making.html
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�Characteristic #1: Contains a Well-Defined Coding  
Standard
In my experience, I have found that most HALs do not have a well-defined coding 

standard associated with them. Now, don’t get me wrong—some microcontroller 

vendor–supplied HALs followed a coding standard, but after reviewing and searching 

their documentation, I discovered that it wasn’t published or explicitly stated anywhere 

for the developers. Perhaps this is just a minor gripe, but the HAL is taking very specific 

microcontroller hardware and features and creating tidy and easy-to-use black boxes. 

A few pages stating the coding standard and mechanisms used to create the HAL 

doesn’t seem like too much to ask, especially given the fact that developers could then 

incorporate that standard into their own documentation and practices to help provide a 

clean and consistent look to the entire code base.

�Characteristic #2: Reasonable Documentation  
and Comments
I love open source software, but I also hate it. Open source software is usually sparsely 

populated with comments, which forces a developer to infer or guess at what the code 

is doing. Just because I can see the code doesn’t mean that I will know what on Earth it 

is doing or, most important, why the developer is doing it that way. Running into even 

the smallest hiccup or problem results in a herculean effort to understand and resolve 

the issue. The documentation doesn’t have to be a book, but a few clear and concise 

comments sprinkled throughout the source code that explain to an engineer how to 

configure and use the HAL is critical. A few examples certainly wouldn’t hurt by any 

means either, or references to documents that can shed light on the code.
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WHEN ARE THERE ENOUGH COMMENTS?

Ask just about any developer this question and you will get a spectrum of answers ranging 

from “Commenting is a time waste” through “There are never enough comments.” The answer 

is that there should be enough comments for a developer who is new to maintaining the 

software to clearly understand what the code is doing and why. Sometimes a developer can 

get away with no comments if the code is self-explanatory, while at other times a developer 

may need to write a giant comment block.

Chapter 5 will dig into documenting firmware in greater detail.

�Characteristic #3: Written in C99
There are so many choices for languages and language versions available to developers 

that one’s head can begin spinning quite quickly trying to decide which to select. 

Typically, as low-level hardware programmers, the language of choice is going to be 

either C or C++, but given tradition the C programming language is the best bet. That 

leaves a simple choice between using C90, C99, or C11. C90 is a bit antiquated and 

is missing some very useful constructs that are included in C99. C11 is too new and 

very few compilers targeting microcontrollers support the updated and new features, 

although more support is being added with each passing year. The safest bet for any 

development team is to make sure any HAL that is being used conforms to the C99 

standard. C99 provides the most flexibility and by now is supported by every compiler. If 

the compiler you are using does not support C99, then it is time to change compilers.

�Characteristic #4: Can Be Compiled in Any  
Modern Compiler
The HAL should be designed to be capable of being compiled on any compiler. Whether 

a development team selects GCC, IAR, Keil, or some other compiler (there are probably 

only 100 different ones on the market), the HAL that is used should be able to be easily 

moved from one compiler to the next without any changes. Standard ANSI-C should be 

used, with compiler-specific additions such as attributes and #pragmas being kept to 

a minimum. Where there are compiler-specific features needed, the HAL should make 

that very clear using pre-processor directives for the desired compiler and flagging an 
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error if the compiler has not yet been specified. Chapter 1 showed an example of how 

this could be done.

It is easy to start developing with one compiler only to discover compiler 

deficiencies, develop a new partnership with a vendor, get a great deal on a new license, 

or have team member preferences change. Keeping to ANSI-C and even occasionally 

checking compilation against multiple compilers can help ensure that the HAL will be 

easily portable to multiple compilers. Numerous teams that I’ve worked with have used 

more than one compiler for different product lines or even had their own compiler that 

they would periodically compare to GCC. (Maintaining your own custom compiler is 

also not recommended even if the company you work for is a silicon behemoth).

�Characteristic #5: Abstract Useful Hardware Features
Microcontroller peripherals have become extremely complex and are designed to cover 

every possible design need conceivable. A development team could easily create a HAL 

with dozens of interfaces to handle all those possible nuances and features. A developer 

who does that would be wasting their time. In most applications, only a few common 

features are used from any single peripheral. The neat custom features like GPIO clock 

validation aren’t commonly used, so there is no need to put them in the HAL unless you 

are a silicon vendor designing the APIs and HALs for your end users. Special features can 

be added to the HAL by extension, which will be discussed in a later chapter. Minimizing 

the features in the HAL can make the HAL more manageable and easier to use.

RECOGNIZING BAD APIS

APIs are the basic building blocks that applications are built upon. A good API should be small, 

efficient, and easily extensible. Throughout my career, I have had the opportunity to use both 

good and bad APIs. Developers can try to quantify what a good API is and what a bad API is, 

but the fact of the matter is that developers will know it when they see it. A bad API will often 

have the following characteristics:

•	 Has more than 12 interfaces

•	 Can be refactored to decrease the interface complexity
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•	 Doesn’t follow an obvious coding standard

•	 Is not easily memorable and requires constant looks at the reference manual

•	 Requires intense study, integration, and testing to get it to work properly

A good API will seem natural to developers.

�Characteristic #6: Easily Extensible
Keeping the HAL common and to general peripheral features to make it more 

manageable is a great idea. The problem, however, is what if I selected a microcontroller 

specifically for that specialized peripheral feature and now don’t have access to it 

through my HAL. A HAL should contain a pre-defined and standard function set, and 

then from those interfaces the HAL should be extensible to include the custom features 

that are included in many microcontrollers. For example, the HAL can expose an 

interface for directly accessing peripheral registers in a specific memory region that a 

higher level Board Support Package (BSP) or application module can use to configure 

the special behavior. The HAL then stays simple and common from one application and 

microcontroller to the next while at the same time allowing additional custom features.

�Characteristic #7: Modular and Adaptable
A HAL should not be a single massive file that contains every possible feature for the 

microcontroller. The HAL needs to be modular, with the different microcontroller 

peripherals each existing in its own module. Separating the peripherals makes the code 

more modular and reusable and allows developers to adapt to different application 

needs. If a project doesn’t need the SPI peripheral, they can simply exclude that module 

from the code base and save precious flash space. Using a modular HAL also makes it 

much easier to parallel the work that needs to be done so that multiple engineers can all 

be working at the same time.
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CASE STUDY—ONE MODULE TO RULE THEM ALL!

The Lord of the Rings is a great movie. I’m a huge fan, but having a single code module to rule 

the entire application does not sound like fun. It’s 2017 when I’m writing this, and I still encounter 

customers who write their embedded software in a single source module named main. In most 

instances, these single-module applications contain at least 100,000 lines of code!

During one particular encounter, we had multiple engineers working on a new product that 

was an improvement over an earlier prototype. The goal was to reuse as much code as 

possible from the original product in order to save time and costs and bring it up to the latest 

and greatest in organization and software architecture. The product had separate hardware 

components, so we assigned one engineer to port the code for each device.

Trying to pull code from the 100 KLOC-plus code base was a nightmare since everything 

was tightly coupled and hardware dependent. In frustration, I finally said the heck with it and 

started from scratch. When I was finally done with my code, the other two engineers were still 

frantically trying to make sense of the code they had before them. Countless time was spent 

on their part searching and sifting through the code looking for things. Poor code organization 

and a single module made their lives a nightmare and cost the company countless weeks if 

not months in additional engineering costs.

The only time that One Module should be used to rule them ALL is if that one module is a 

configuration module that is used to enable and disable features and configure the project.

�Characteristic #8: Deterministic and Well-Understood 
Behavior
As teams develop and use a HAL implementation, data should be collected and 

analyzed that provide information related to the HAL performance. A good HAL will 

be deterministic and have well-defined and -understood behavior. A developer should 

know that calling Gpio_PinWrite will require a minimum of 15 microseconds and a 

maximum of 25 microseconds to execute but that it will always be within that range 

on specific target processors running at a specified frequency. In most cases, HALs 

are provided for microcontrollers but contain no intimate details as to how the HAL 

behaves in a real-time environment. Sure, one could argue that different microcontroller 

architectures and clock rates will change these characteristics, but even the data 
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provided for one or two architectures with the test details can help an engineer infer the 

behavior they can expect. Once implemented in their own design, an engineer can then 

verify that assumption themselves, record the new values, and push those back to the 

HAL producer to provide yet more data for engineers to make ever better decisions.

�Characteristic #9: Error-Handling and Diagnostic  
Capabilities
I would guess that 99 percent of the HALs I have seen give little to no thought to 

error handling or diagnostic capabilities. I suspect the reason is that using HALs in 

microcontroller-based applications is so new that the whole focus is on just getting the 

first cut done. I suppose the alternative could be that the HAL developers just assumed 

that there would never be an error or problem and that the system would just run 

flawlessly. I’ve met quite a few teams in my career that had that mentality.

Error handling doesn’t have to be perfect. Returning a value indicating if the 

intended interfaced call was successful or not could be enough. Alternatively, perhaps 

requiring a full check on the peripheral to ensure that it is configured properly is 

necessary. Developers should look for at least some minimal amount of error handling 

in the HAL. Otherwise, something will go wrong and it will be up to the developer to dig 

in and try to discover what.

CASE STUDY—ASSUMING EVERYTHING WILL BE OKAY

Software engineers are very optimistic creatures. If the software runs correctly one time, it 

is often assumed that it will always run correctly no matter what the circumstances may be. 

Unfortunately, this is not the case!

On numerous occasions, I have encountered application code that just did not seem to work 

the way that was expected. After being called in to help identify the issue, I discovered that the 

developers not only didn’t include any error handling or checks in their software, they also did 

not check return values for functions.

After sprinkling error checking throughout the code, I discovered that one function was 

returning a value that stated there was insufficient memory available. After making a slight 

adjustment, the code ran fine.
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Debugging software can be time consuming and expensive, both financially and emotionally. 

Don’t assume that everything will be okay; in fact, assume that nothing is going to go right! 

Make sure that all return values are checked for errors. Adding in extra checks may use some 

extra time and extra code space and cause a negligible performance hit, but these minor costs 

will save far more time, budget, and emotional wear and tear than they cause harm.

�Characteristic #10: Integrated Regression Testing 
The major benefit of using a HAL is to abstract out the lower-level hardware and to 

create a clean interface that is easily ported. If code is going to be reused, there should 

also be regression tests associated with that code. At a minimum, developers should 

create a test-case list that can be walked through to verify the HAL behavior. Manual 

checking can be error prone and extremely labor intensive. In many cases, a team will 

pick only a few boundary conditions and just assume the rest are correct. Automated 

regression tests, on the other hand, can walk through all the possible combinations and 

completely verify all the test cases. As the HAL matures and grows, new test cases can 

be added or removed to fit the team needs. Just remember: If the software hasn’t been 

tested then it doesn’t work! Figure 2-1 provides an example of what an integration server 

might look like.

Compiler

Source Code

Configuration

Libraries

Test Harness

Unit Tests

Functional

Regression

Integration

Test Reports

Figure 2-1.  Integration server performing automated testing
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An integration server will pull the latest source code, configuration, and libraries and 

verify that there are no problems compiling the code. Some setups will even perform 

static code analysis and generate reports based on the compilation and code analysis. 

Additional analytics can be performed, such as measuring the software function 

complexity.

Once the compiler has successfully compiled the code, the executable can be passed 

to the test harness. The test harness can use either mock hardware—that is, hardware 

that is simulated in memory—or it can use real hardware and integrate into GDB or 

other debugging tools. The test harness should have tests that are traceable to the 

system requirements. Example tests that would be performed are unit tests on functions, 

functional tests to verify that hardware performs as expected, regression tests that cover 

all previous test cases and ensure that they still pass, and then perhaps even integration 

testing.

�Evaluating HAL Characteristics
There are many ways that a developer can evaluate whether a HAL is going to meet 

the system requirements, but one method that I have found provides a very unbiased 

opinion is the KT Matrix. The KT Matrix4 allows a developer to identify all the 

characteristics that they are interested in evaluating concerning a decision that they 

need to make. Each characteristic can be provided a weight to show how important 

it is to the decision-making process. The KT Matrix can be used to decide which HAL 

to use. The potential HALs can then all be evaluated based on how well they meet the 

characteristics. Each HAL is given a weighted value, and the HAL that best meets the 

characteristics is the HAL that is selected. Figure 2-2 shows an example KT Matrix that a 

developer might use to select a HAL.
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There are a few different ways that the KT matrix can be evaluated. In general, each 

characteristic in a group is given a rating from 1, being the worst rank in the category, 

to X, being the highest rank in that category. Every engineer involved in the decision 

provides a ranking for the HAL, and then the ranking is weighted and added to the other 

rankings. The rankings for all the criteria are then summed and the HAL with the highest 

score is the HAL that best meets the HAL criteria.

�To Build or Not to Build
Chances are, there is no HAL on the planet for microcontrollers that currently meets all 

the characteristics that we just discussed or that meets every development team’s needs. 

Certainly, some good HALs exist, but no single microcontroller HAL brings the best of 

all worlds. Some may be complete overkill for the application space or company needs 

while others may not go far enough. In these circumstances, a development team may 

need to build their own HAL. For those of you up to that challenge, we will be discussing 

how to do this in detail in this book, but for now let’s talk about how to decide whether to 

build one ourselves, the potential cost, and how to make the process manageable.

Figure 2-2.  KT Matrix to select a HAL
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There are several factors that a development team needs to consider before deciding 

to build their own HAL. These factors include:

•	 Availability of existing HALs

•	 Target microcontroller(s) and application

•	 Cost

•	 Development time

Before deciding to start designing your own HAL, it’s critical to determine whether 

you need to design one yourself or if one exists that already meets your needs and 

requirements. A good starting place is to do some basic research and identify any HALs 

and standards that currently exist and get familiar with them. What are their strengths? 

What are their weaknesses? Having this information empowers a team to properly 

evaluate whether existing HALs will fit their company’s needs.

The target microcontrollers and application can influence whether a development 

team will create their own HAL or use an existing HAL. For example, if a development 

team has decided that they will always use a microcontroller from a single 

microcontroller supplier, the team may be able to just use the HAL provided by the 

microcontroller vendor. This would save the time and cost of developing a HAL from 

scratch. However, it also ties the development team into that vendor’s ecosystem 

and may make it extremely costly to change microcontrollers later on down the road. 

Consider the fact that in most cases those HALs have licenses or copyrights associated 

with them and using them with any other manufacturer would violate those licenses.

Developing a HAL from scratch can take some additional development time to be 

properly designed as well as some additional up-front costs. The costs are usually offset 

and easily recouped after one or two development cycles depending on the experience 

of the designing engineers. However, it is not uncommon for a HAL to require multiple 

iterations and multiple projects before it is finally fleshed out and covers all the possible 

permutations. The hope, however, is that developers can use the knowledge and 

experiences in this book to quickly and cost effectively implement their own HALs that 

will not tie them to any microcontroller toolchain.
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�A First Look at a HAL
To many readers, what a HAL looks like is completely obvious. A HAL is round, with a red 

optical center surrounded by a lens and gray trim. This is, of course, the description for 

how the HAL 9000 looked in 2001: A Space Odyssey. The HAL that we are interested in as 

developers is a software interface that allows us to easily control a microcontroller. To a 

developer, these HALs are nothing more than a header and source module with a pre-

defined function set. We will be going into a great deal of detail on this later, but to give a 

sneak peak, Figure 2-3 shows an example HAL for a GPIO peripheral.

Figure 2-3.  Example GPIO HAL

Figure 2-3 has a clear majority of the characteristics we previously discussed that all 

HALs should have. The characteristics that are lacking can be easily added by the reader. 

Throughout this book, we will go into the details of the HAL listed and discuss the design 

decisions and steps to put it together, not just for GPIO but for any microcontroller 

peripheral. Consider Figure 2-3 your sneak peek!
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�The API Scope
The API is a tool available to developers that can be used to dramatically speed up 

software development. Developers who want to write code that is reusable will break 

their software up into logical components that exhibit certain functions and features 

that are useful building blocks for the application. A developer doesn’t necessarily 

want to understand every detail included in the component but simply what inputs are 

necessary to get the desired outputs. An API is provided for the component to abstract 

the underlying details and allow application developers to very rapidly develop software.

It is important to note that a HAL is really a specialized case for an API. Both APIs 

and HALs are used to abstract out the underlying component details and speed up 

software development. They both are used with components. The real difference 

between them is that a HAL is used to abstract hardware functionality while an API is 

used to abstract software components.

For most software developers, the HAL doesn’t even exist in their minds because 

they are always writing code at the highest software levels available. Take, for example, 

web developers or mobile phone application developers. Sure, there is hardware that 

drives the entire system, but it is abstracted through so many software layers that, to the 

developer, there is only software.

APIs act as a standard—or, to some degree, as a contract—between the component 

that is being used and the necessary inputs and outputs necessary to make the 

component function. They provide the definition for how to use software libraries, real-

time operating systems (RTOSes), and many other possible software components one 

might find in a system.

Embedded-software developers might wonder if there are any API standards that 

can be used to reuse code and speed up development. At first thought, the answer is that 

there aren’t any. The truth is, though, that there are API standards that we use that we 

aren’t even aware exist! Take, for example, any RTOS that is on the market today. Each 

RTOS has its own API standard that it adheres to that allows developers to consistently 

use and reuse the RTOS. Now, of course, each RTOS has a different API standard, and 

sure it would be great if they all had a single standard that they followed (something like 

POSIX), but unfortunately, that is not the case (for now).
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There are many examples available to embedded-software developers of APIs. The 

following is a small list, but it should give you an idea about the APIs that are available:

•	 EEPROM JEDEC Standard (all EEPROMs have a standard hardware 

interface that can be used to create a standard API interface)

•	 FatFS (open source Fat File System library)

•	 AUTOSAR

•	 GUIX (graphical user interface APIs from Express Logix)

•	 Arduino (high-level components do have a standard interface)

�API Characteristics to Look For
Many API characteristics that developers should look for will include the list that was 

previously discussed for the HAL. However, that list can be expanded to include generic 

characteristics that are considered good programming practices. For example, a few 

additional characteristics that we should consider include the following:

•	 Uses const on read-only parameters liberally

•	 Uses easily understood naming conventions

•	 Has consistent look and feel that is intuitive

•	 Well documented with examples

•	 Flexible and configurable

Let’s take a quick look at why these five characteristics are so important.

�Characteristic #1: Using const Frequently
The const keyword tells the compiler that the data being referred to by the const 

variable is read-only. The actual memory location may be writable, but through the 

variable the data should be treated as read-only. There are many times when a developer 

may have data that can change, but when passing it into an API call, doesn’t want the 

data manipulated or modified. To protect that data, one can type the variable as const 

and pass it into the API. If the API doesn’t need to modify the variable, it should treat 

it as read-only so that a maintaining engineer or just a simple coding mistake can’t 

accidentally corrupt or change the data.
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A good API will declare many parameters as const because it is just using the data to 

perform useful work and wants to protect the data that it is using. APIs that are light on 

using const aren’t necessarily bad, but they do open themselves up to the opportunity 

for something to go wrong and behave unexpectedly.

�Characteristic #2: Easily Understood Naming Conventions
A good API is easy to read and understand. As a developer becomes familiar with the 

API, they should be able to naturally remember the different API calls based on the 

function that is needed. This seems obvious, but in many circumstances the APIs that 

we use are quite bad and require us to constantly go back to the documentation to 

remember the exact name.

A great example is if a developer were to right now go and compare the API calls 

associated with FreeRTOS with those provided by Micrium’s uOS II or III. FreeRTOS uses 

weird and non-intuitive APIs. Some calls have v’s or x’s in front, which can easily confuse 

developers. For one, they must figure out what the heck those v’s and x’s stand for. 

Once they do, they must try to remember what they mean! Was v for a macro or a direct 

function call? Was it the other way around? On the other hand, the uOS calls are obvious 

and straightforward and much easier to remember. Figure 2-4 shows a few examples 

from FreeRTOS and Figure 2-5 shows the corresponding calls in uOS III. 
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Figure 2-4.  Example FreeRTOS APIs5

5�http://www.freertos.org/a00106.html
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Figure 2-5.  Example uOS III APIs6

6�https://doc.micrium.com/pages/viewpage.action?pageId=10753180
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�Characteristics #3: Consistent Look and Feel
The APIs for any component should have a consistent look and feel. They should follow 

a similar standard and be intuitive to the developer. APIs that are not consistent are error 

prone, and developers often find themselves digging through the documentation trying 

to figure out what is going on. The naming conventions should also follow a standard that 

gives the overall API a clean and professional look. Examining Figure 2-4 and Figure 2-5 

again will demonstrate what a developer would expect from a professional API.

�Characteristic #4: Well Documented
Good APIs will have great documentation associated with them, detailed documentation 

that shows the inputs, outputs, and expected results. Some APIs will even provide initial 

and post conditions, which is awesome! There should be examples that show how to use 

the APIs and maybe even a few that show a developer what not to do and identify the 

primary pain points developers will encounter when using the component.

�Characteristic #5: Flexible and Configurable
APIs are at a high enough level that sometimes one size does not fit all. A good API should 

be flexible enough to work on multiple hardware platforms and provide a HAL to deal 

with differences in the hardware. The ability to configure the component to account for 

differences in hardware or even application is very critical. There are a lot of popular APIs 

available that just are not well developed, and the users end up struggling through them. 

That time and effort could have been spent innovating and coming up with improvements 

rather than just getting the component to function the way it is supposed to.

�Designing Your Own APIs
In many instances, developers will be integrating components into their applications 

that already have a defined API that they have very little control over. However, there will 

be times when developers are creating their own components that they will be using for 

years as their own products evolve. In these instances, developers will want to create 

their own APIs that adhere to the characteristics that we just discussed.
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�A First Look at an API
APIs really don’t look any different then HALs do. They are simply function calls within an 

application that have a public scope and can be accessed by any module. The only difference 

is that the APIs are designed to make application development easier versus working 

with hardware easier. A great API example to consider is for an RTOS. Figures 2-6 through 

2-8 show the example API calls to create a task in Micrium’s uC/OS-III, FreeRTOS, and 

Expresslogics’s ThreadX real-time operating systems. Take a moment to look through them. 

Figure 2-6.  FreeRTOS TaskCreate7

7�http://www.freertos.org/a00125.html
8�https://doc.micrium.com/display/osiiidoc/OSTaskCreate

Figure 2-7.  Micrium uc/OS-III OSTaskCreate8
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Now, I am not knocking any RTOS, but from a quick look it is obvious that there 

is no standard that is being followed either in naming convention or for features and 

functionality. Each RTOS will fill a need and a niche, and some will meet the API 

characteristics more than others. I’m not advocating one RTOS over another, but rather 

simply sharing the API for three very popular and successful RTOSes. Starting with one 

RTOS and then trying to switch to another obviously will require rework since the APIs 

are not standardized.

�Wrapping APIs
As I mentioned earlier, there may be certain components in an embedded system that 

meet a common design challenge, such as real-time scheduling, but the components 

available on the market do not have a standard interface. When this occurs, developers 

can take the matter into their own hands and add an API wrapper to the components to 

make them fit a standard interface.

Figure 2-8.  Express Logic ThreadX tx_thread_create9

9�http://rtos.com/images/uploads/programmersguide_threadx.pdf
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For example, I might have three different RTOSes I want to use in a design, and the 

product or process will determine which one I use. As a developer, I can look at the 

commonalities between the operating systems and create my own API functions that 

will call the desired function in the target RTOS. I could create an API for creating a task, 

using mutexes, semaphores, or even message queues. The API would then be a generic 

and standard call, which is replaced by my call into the specific RTOS function. Figure 2-9 

shows an example of what the wrapper would look like. The application code would use 

this function, and then within that function call would be the RTOS-specific task-create 

function call.

Figure 2-9.  Using an API wrapper

Using a general wrapper in this way has many advantages, and there are quite a few 

places where a developer may want to use a wrapper API, such as:

•	 RTOS calls

•	 Memory accesses

•	 File systems

•	 High-level components that require third-party software

•	 Circular buffers

•	 External devices

Using a wrapper is not all blue skies though. Every function call does incur a little bit 

of overhead on the processor, and passing parameters into the function does use some 

stack space. In most applications, the overhead performance hit and extra code will be 

negligible. Developers should still be careful and aware that the wrapper does affect 

performance and code size.
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�Why Design Your Own APIs and HALs?
Silicon vendors provide their own HALs to help speed development, or even tools like 

Processor Expert and STM32CubeMx that can automatically generate the HALs needed 

based on the project configuration. Microchip has MPLAB Harmony, Renesas, the 

Renesas Synergy™ Platform, so why not just use those? After all, a lot of time and effort 

has gone into developing these capabilities for developers, and they are offered free of 

charge. There are a few times when a development team may decide to overlook the 

silicon vendors’ APIs and HALs and instead use their own. These include when the 

development team is concerned with the following:

•	 Not wanting to be stuck using the vendor’s toolchain, which can be 

costly and time consuming to change

•	 API is under copyright so it cannot be ported without being 

completely rewritten

•	 API quality

•	 Coding standards

•	 Robustness

•	 Code size

•	 Quality

•	 Testability

Microcontroller manufacturers are making it easier and easier for developers  

to abstract the low-level hardware and focus their efforts on their application.  

For example, the Renesas Synergy Platform has tried to meet all these concerns by 

developing a strict software development life-cycle process and focusing heavily on 

quality. For some developers, this is great news since they no longer need to worry 

about that low-level driver design. For other developers, this is the end of embedded 

software as we know it, or they may have other concerns that will cause them to shy away 

from using these vendor-specific solutions. The truth is, microcontrollers have become 

extremely complex, and in order to deliver products within realistic time frames and 

budgets, developers need help to abstract out these complexities and work at a higher 

abstraction level.
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�Comparing APIs and HALs
Before we conclude this chapter, it is a useful exercise to examine the similarities and 

differences between APIs and HALs. As we have seen, APIs and HALs have a lot in 

common. In fact, in many circumstances developers may use the term API to include 

both the low-level software and the high-level application software. Remember, HALs 

interact with hardware at the lowest levels while an API interacts with other software 

at a high level. Beyond these differences, developers are looking for the exact same 

characteristics in both APIs and HALs. Take a few moments to examine Figure 2-10, 

which demonstrates the commonalities and differences between APIs and HALs. 

Developers will easily notice that APIs and HALs have far more in common than they do 

differences.

Interacts with SoftwareInteracts with Hardware

HALs APIs

Low-Level Software High-Level Software

Abstractions

Hide Implementation Details

Encapsulate Data

Libraries, Frameworks and Components

Configurable

Improve Reusability

Increase Portability

Simplify Design and Implementation

Extendable

Must be Real -time

Figure 2-10.  APIs versus HALs

�Going Further
Understanding HALs and APIs requires more than just reading about them in this book. 

Practical experience and knowledge is crucial, especially for developers interested in 

developing their own portable HALs and APIs. The following are a few thoughts on what 
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the reader can do to strengthen their understanding and start applying the concepts 

we’ve just discussed immediately in their own development efforts:

•	 Identify at least three different HALs that exist currently in the 

embedded-software industry. Schedule time to review these 

standards. While reviewing them, develop a simple chart that 

answers the following questions:

•	 What strengths does this HAL exhibit?

•	 What weaknesses does this HAL exhibit?

•	 How well does it meet the characteristics every good HAL  

should have?

•	 Identify at least three different APIs that exist currently in the 

embedded-software industry. Schedule time to review these 

standards. While reviewing them, develop a simple chart that 

answers the following questions:

•	 What strengths does this API exhibit?

•	 What weaknesses does this API exhibit?

•	 How well does it meet the characteristics every good API  

should have?

•	 Earlier in the chapter, three different microcontroller platforms were 

mentioned that utilize a HAL and API framework. Investigate each 

framework listed here and examine the similarities and differences:

•	 Renesas Synergy Platform

•	 Microchip Harmony

•	 ST Microelectronics STM32CubeMx

•	 From the preceding platforms, how easy would it be to switch from 

one silicon vendor to the next? Are their APIs similar or completely 

different? List several advantages and disadvantages to using these 

platforms.
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•	 Review the characteristics of HALs and APIs. Make a simple 

spreadsheet with each characteristic listed. Now, go online to a few 

RTOS vendors. Review their API interfaces for task management, 

semaphores, mutexes, and message queues. How well do these APIs 

meet the characteristics of good APIs?

•	 Create a KT Matrix that can be used to evaluate APIs and HALs from 

third-party sources. Pick a few external APIs, such as ones for an 

RTOS or HAL, and with a close group of engineers walk through the 

process for selecting the API.

•	 Review Figures 2-4 to Figure 2-8. Do real-time operating systems 

have a standard API interface that developers can follow? What does 

this mean for developers when it comes to porting to a new OS, 

development time, learning curve, and costs?

•	 Design a wrapper that could be used to interact with any RTOS 

function calls.
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CHAPTER 3

Device Driver 
Fundamentals in C

“Software is like entropy. It is difficult to grasp, weighs nothing, and obeys 
the second law of thermodynamics; i.e., it always increases.”

—Norman Ralph Augustine

�Understanding the Memory Map
The memory in every microcontroller is broken up into different regions that relate to 

specific microcontroller functions. Despite similar behaviors and capabilities among 

microcontrollers, memory regions and organization vary from one microcontroller to 

the next, and sometimes even within the same microcontroller family. Even though each 

microcontroller is organized differently, a developer can still develop drivers that are 

reusable and easily portable from one microcontroller to the next.

To create a driver, a developer must understand the different memory regions, 

their purpose, and the techniques available in the C programming language to map to 

those memory regions. Memory is organized into different regions, such as CPU, ROM, 

RAM, FLASH, Peripheral, and EEPROM. These regions are connected to the CPU 

through various buses, but the specifics will vary from one architecture to the next. 

Figure 3-1 shows an example of what a developer would expect to find located within 

the memory map.
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ROM memory regions are programmed by the microcontroller manufacturer and 

can contain anything the manufacturer thought would be useful to their clients. For 

example, it is not uncommon to find bootloader, motor control, or flash algorithms 

permanently stored in these ROM regions. A ROM memory region cannot be modified 

by a developer, and the algorithms located there are permanent. A ROM region does not 

count toward the total code space that is available to a developer. Developers can access 

the algorithms stored in the ROM by mapping a function pointer to the code located 

there and de-referencing it.

RAM memory regions are volatile memory locations that can be programmed during 

the program’s execution but will lose their data upon reset, power cycle, or power down. 

RAM contains the program stack, heap, and statically allocated variables. A developer 

must tell the compiler which memory areas will contain the program stack (for a bare-

metal application) and the heap (which contains dynamically allocated variables such 

as the stack in an Real-time operating system (RTOS) and other on-the-fly application 

needs). Once these memory regions have been specified, the remaining memory can be 

used for general-purpose application variables and data storage.

Flash memory regions contain the executable application instructions, data tables 

(such as calibration data), and initialized variable values. In general, the flash memory 

regions are programmed when a device is a manufactured. However, the flash contents 

can be modified in the field through a bootloader application. The flash contents 

are carefully monitored during program development to ensure that the region is 

appropriately sized to hold the entire application. A good rule of thumb is to also size the 

flash region to allow new features to be added over the product’s lifetime.

ROM

FLASH

EEPROM RAM

CPU Timer

GPIO

UART

Figure 3-1.  Microcontroller memory regions
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The CPU region contains control registers for the CPU itself, sometimes related to 

interrupts, faults, exceptions, and clock control. CPU registers are typically initialized by 

the start-up code, with vendors providing their own interfaces into the memory region. 

CPU regions are typically abstracted to hide the inner workings of the microcontroller 

from the developer.

CASE STUDY—ASSUMING RAM VALUES ARE PRESERVED

On numerous occasions, I have seen clients who get the ingenious idea to save memory and 

application time by using RAM to store data between power cycles. The assumption is that by 

writing data to RAM, performing a reset, and then powering up, the memory location can then 

be read with the previous application’s values and state. I have seen developers most tempted 

to do this when creating a bootloader. The data stored is meant to tell the application whether 

the application or the bootloader should be loaded.

The problem with using RAM to store data between resets is that the data stored in memory 

is NOT guaranteed to persist between the power cycle or reset. The data may be preserved 

in most circumstances but undoubtedly is occasionally cleared out or corrupted, resulting in 

unexpected behavior. Assuming that the RAM data persists between power cycles will result in 

a software bug that is elusive and difficult to consistently repeat.

EEPROM regions are the rarest and typically will not be found on most 

microcontrollers. EEPROM provides a developer with a working region for calibration 

data that is separate from flash and provides a safe means for updating the data without 

the risk of accidentally erasing application code. Microcontrollers that don’t include 

EEPROM will typically provide flash libraries that can be used to simulate EEPROM 

behavior but risk application code corruption.

The peripheral memory region is the most interesting to driver developers. The 

peripheral memory region contains the registers that control the microcontroller’s 

peripherals, such as general-purpose input and output, analog-to-digital converters, 

serial peripheral interface, and many others. In order to create a driver, a developer must 

map the driver code to the memory region that the peripheral registers exist in. Once 

again, these regions will vary from one microcontroller to the next. In this chapter, we 

will discuss general techniques and strategies for driver development, and then in the 

next chapter we will dive into the nitty-gritty details.
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The memory regions for a microcontroller are not required to be contiguous in any 

shape or form. A memory map may start with memory locations for application code, 

switch to RAM, then peripherals, and then back to application code. There can even 

be large spaces between usable memory locations that are commonly referred to as 

memory-map holes. An example of a memory map with holes can be seen in Figure 3-2.

Flash

GPIO

UART

Timer

ADC

0x000000

0x200000

0x100000

0x600000

unmapped

Figure 3-2.  Generic microcontroller memory map

�Planning the Driver Interfaces
Resource-constrained embedded-software development has a tendency toward chaos. 

Back when the C programming language was originally introduced, best practices and 

layered software architectures did not exist. Embedded software was littered with goto 

statements, driver code was tightly coupled to the application code, and there was no 

distinction as to where the middleware started or ended. The result was a giant code 

mess that rightly deserved the name spaghetti code.

Now, for those readers who have not yet drawn the connection, Beningo is an Italian 

name, and like any good Italian, a love of pasta is a given. In this instance, an analogy 

between pasta and the way that software is architected is completely appropriate. Take 

a moment to consider this: spaghetti is chaotic; noodles intertwine going this way and 

that way, resulting in a complete lack of structure. Writing unstructured code is exactly 

like spaghetti; with each bite you have no clue what you are going to get! (At least with 

spaghetti it will be tasty!)

On the other hand, there is lasagna! The noodles are layered, giving the meal 

structure and order. Code developed using layers is not only easier to understand, but 

it also has the potential to have one layer removed and a new layer added, basically 
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allowing for reuse and ease in maintainability. (At times, I have been tempted to swap 

out lasagna layers, but I’ve always found it’s just better to eat it!) Remember—we want 

to write lasagna code, not spaghetti code! Figure 3-3 is an example software architecture 

a developer might choose that decouples the different software layers. We discussed 

software architectures back in Chapter 1.

Figure 3-3.  The lasagna software architecture

Writing software in a layered, lasagna-like manner allows the developer to easily 

define where one software type (layer) ends and another begins. At that point, we have 

what is known as a software interface. In Figure 3-3, we have four possible interfaces 

that need to be clearly defined. The interface allows the software layer directly above 

to interact with the software or possibly the hardware that exists beneath it. Defining a 

clean and extensible interface allows developers to not only organize their code but also 

provide a common interface that can be reused from one application to the next.

Starting in Chapter 6, we will be discussing in detail how to walk through and 

properly design and plan the interfaces. We will even walk through how to develop the 

interfaces for the hardware abstraction layer. At this point, in order to properly plan a 

software interface, a developer should look at the memory map that we discussed in 

the previous section and identify the low-level components that may be required in the 

driver layer. A similar list can be developed for each component that will exist in the 

middleware and application layers. The result may be a component diagram that looks 

like Figure 3-4.
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The component interfaces occur where one layer touches another. The interface 

will consist of functions that result in some action being taken by the component, 

such as toggling a pin state, setting a register, or simply reading data. In order for 

those functions—the interface—to behave as expected, it can be extremely useful for 

developers to create a contract relationship between the interface and the developers 

who use it.

�Design by Contract
Software interfaces can get complicated very quickly. A modern API and HAL may have 

over a hundred interfaces that are used to get the system to behave in the desired way. 

One method that can be used to ensure that developers have a clear understanding 

of how to use the interface is to use design-by-contract.1 Design-by-contract is a 

methodology developers can use to specify pre-conditions, post-conditions, side 

effects, and invariants that are associated with the interface. Every component then 

has a contract that must be adhered to in order for the component to integrate into the 

application successfully. Figure 3-5 demonstrates how design by contract works.

Figure 3-4.  Component identification

1�https://en.wikipedia.org/wiki/Design_by_contract
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As developers, we must examine a component’s inputs, outputs, and the work (the 

side effects) that will be performed. The pre-conditions describe what conditions must 

already exist within the system prior to performing an operation with the component. 

For example, a GPIO pin state cannot be toggled unless it first has the GPIO clock 

enabled. Enabling the clock would be a pre-condition or a pre-requisite for the GPIO 

component. Failing to meet this condition would result in nothing happening when a 

call to perform a GPIO operation occurs.

Once the pre-conditions for a function have been met, there may be inputs that are 

provided to the component so that it can carry out its function. An example would be 

toggling the state for a GPIO pin. The interface may have a function designed to elicit this 

behavior that requires the pin number to be passed in to properly identify the pin that will 

be toggled. Some interfaces may require no additional inputs other than making a call to 

the interface, while others may require a dozen or more inputs to get the desired behavior.

If the pre-conditions are met and the input data are valid, a developer would expect 

there to be a resulting side effect. A side effect is basically just that something in the 

system changes. Maybe a memory region is written or read, an i/o state is altered, or 

data is simply returned. Something useful happens by interacting with the component’s 

interface. The resulting side effect then produces post-conditions that a developer can 

expect. The system state has changed into a desired state.

Finally, the outputs for the component are extracted. Perhaps the interface returns 

a success or a failure flag—maybe even an error code. Something is returned to let the 

caller know that everything proceeded as expected and the resulting side effect should 

now be observable.

Component

Errors /
Exceptions 

Preconditions

Inputs Outputs

Post-conditions

Side Effects

Figure 3-5.  Design by contract
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DEFINITIONS

Pre-conditions are conditions required to be met prior to the function being called. Pre-

conditions are specified in the component contract, which frees the function from having to 

check the conditions internally.

Post-conditions are conditions guaranteed to be met when the component has completed 

execution provided that all the pre-conditions have been met.

Side effects are the effects that the called function has on the system when it is executed. 

The side effect is the useful work that is performed by the function.

Invariants are conditions that are specified across the application that must be met to use the 

component. For example, when the restrict keyword is being used with a pointer, which tells 

the compiler the input will not be used anywhere else within the program.

�Assertion Fundamentals
Before moving on to discuss driver models and the different methods embedded-

software developers use to create drivers, it is important that we take a brief moment 

to review an important construct within the C programming language that is usually 

neglected or abused. The construct is the assert macro, which allows a developer to test 

assertions about the software.

The best definition for an assertion that I have ever encountered is as follows: “An 

assertion is a Boolean expression at a specific point in a program that will be true unless 

there is a bug in the program.”2 Assertions can be used to make sure that the program 

state is exactly what we expect it to be. If the state is something else, an assertion will 

stop execution and provide debug information, such as the file and line number where 

the assertion went wrong. A developer can then dive in and understand what happened 

before the application has the chance to change states.

The assert macro is defined in the assert.h header file. The assert macro 

generally takes the form shown in Figure 3-6. If the assertion is false, a developer-defined 

function is called to notify the user about the failed condition. In this case, when the 

assertion is false, a message will be printed over the UART that lists the file and line 

number of the failed assertion.

2�http://wiki.c2.com/?WhatAreAssertions
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The reason that I bring up assertions at this point, even though they are really 

beyond the scope of this book, is to point out that assertions are a great way to check 

inputs, outputs, pre-conditions, and post-conditions for interfaces and functions that are 

using design-by-contract interface definitions. A developer can use assert to verify that 

the conditions and inputs are met, and if not then there is a bug in the application code 

and the developer can be instantly notified that they did something wrong.

Using assertions is straightforward. A developer determines what the precondition 

is to the function and then develops an expression to test that condition. For example, 

if function x requires that the input be less than 150, a developer would check the pre-

condition in the function using code like that found here:

void Function_X(uint8_t input)

{

   assert(input < 150);

   // Function main body 

}

Every input and pre-condition should be checked at the start of a function. This is 

the developers’ way to verify that the contract has been fulfilled by the component user. 

The same technique can also be used to verify that the post-conditions, output, and even 

the side effect are correct.

Now, some readers may be thinking to themselves that given enough assertions 

in the code, the overhead and the code space could quite quickly become too much. 

Assertions are meant to catch bugs in the program, and in many cases they are only 

enabled during development. Disabling assertions will reclaim code space and a few 

instruction cycles. Defining the macro NDEBUG will change the assert macro to an empty 

macro, essentially disabling the assertions.

Figure 3-6.  Example assert macro implementation
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Pay attention! This is critical! If assertions are going to be disabled for production, 

the final testing and validation needs to be performed with the assertions disabled. The 

reason for disabling them is that evaluating the expressions does affect the real-time 

performance, even if it is only a few clock cycles. Changing the execution time after 

testing could have completely unexpected consequences.

�Device Driver Models
There are many ways that a low-level driver can be developed for a microcontroller. The 

two generic models that we are going to review are blocking and non-blocking drivers. 

Figure 3-7 compares each model using a sequence diagram, with lines representing the 

application’s life line. The life line shows the application code’s access to the CPU and 

the device driver’s access to the CPU.

A blocking driver has exclusive access to the CPU and will not yield the CPU until 

the driver operation is completed. A typical example is the way that printf is set up in 

an embedded system. Calling printf first formats the desired string and puts the first 

character into the UART transmit buffer. The program then waits until the character is 

completely transmitted before entering the next character into the buffer. The process 

repeats until all characters are transmitted. Only then will printf return and allow 

the next line of code to execute. A blocking driver has the potential to destroy the real-

time performance of an embedded system, and care must be taken to understand the 

minimum, maximum, and average execution times for drivers written in this manner.

The alternative strategy is to use a non-blocking driver. A non-blocking version for 

printf, which is a non-standard implementation, would prepare the string and place 

the first character into the transmit buffer. Once the character is in the buffer, printf 

would then return to the main application and allow it to continue executing while the 

character was being transmitted. The application would then use an interrupt to detect 

when the character transmission was complete so that the next character could be 

placed in the buffer.
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On the one hand, blocking drivers can be very simple since they don’t need to return 

to the main application and perform monitoring functions. The problem is that the real-

time performance can be severely affected. Alternatively, non-blocking implementations 

can be used, which will preserve the real-time performance but will potentially increase 

the complexity for the application. The application must now in some way monitor for 

when the next character is ready to be placed into the buffer. The two primary ways that 

the buffer can be monitored are polling- or interrupt-driven behavior.

�Polling Versus Interrupt-Driven Drivers
The easiest way to monitor that an event occurs in the system is to just periodically check 

if the complete flag has been set. Periodically checking a flag or register bit is known as 

polling. We basically ask, what’s the flag state now . . . now . . . now . . . now . . . how about 

now . . . over and over until the flag is set. Once the flag is set, the application performs its 

next operation. Polled methods are simple but very inefficient. Clock cycles are wasted 

simply checking whether something should be done now or later.

A perfect example showing how the real-time performance can be dramatically 

affected by a blocking driver or function can be seen in Figure 3-8. The figure shows 

the timing required to print “Hello World” using a standard baud rate of 9600 bits per 

second. Using “Hello World” is a relatively simple string, yet, upon examining the figure, 

the reader will discover that it is taking approximately 12 milliseconds to execute!

(a) (b)

Application Driver Application Driver

Figure 3-7.  (a) blocking driver model (b) non-blocking driver model
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The standard implementation for printf can get even worse! Printing a fixed 

string doesn’t help when debugging a system. The data that is transmitted often 

includes variables and data that will change from one iteration to the next and require 

substitution. Figure 3-9 shows the same blocking implementation that is now printing 

out the system state using printf(“The system state is %d”, State). The result is 

that, on average, the transmission takes 21 milliseconds!

Figure 3-8.  Blocking printf timing to print “Hello World”

Figure 3-9.  Blocking printf timing to print “The system state is %d”, State

Obviously, blocking an application for tens of milliseconds is going to be 

unacceptable in a real-time application. The alternative to using polling is to use 

interrupts. Every microcontroller has interrupts for nearly any event-driven situation 

that a developer may be interested in. They can be much more efficient and by their very 

nature are non-blocking. Setting up and configuring an interrupt can be a complex and 
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error-prone endeavor. A developer needs to carefully weigh their options and select the 

method that is most appropriate for the situation.

If a developer were to go back to their printf implementation and decide to 

implement a non-blocking solution that uses the UART transmission complete interrupt 

to load a new character into the transmit buffer, they would see a drastic change in their 

application’s performance. First, the new implementation would process the string and 

prepare it to be transmitted, which, depending on the string’s complexity, could take 

anywhere from 0.5 to 2.0 milliseconds for the strings used in the blocking example. Once 

the first character was transmitted, the remaining characters would be transmitted in an 

interrupt that executed approximately every 1.2 milliseconds, as shown in Figure 3-10.

Figure 3-10.  Transmit interrupt frequency for 9600 bauds

The major concern then becomes how much CPU time the interrupt is using. 

Interrupting the application every 1.2 milliseconds could potentially affect the 

application. A developer will want to understand how long the interrupt will be 

executing every 1.2 milliseconds. Figure 3-11 shows the average UART transmit 

execution time for this example. The interrupt requires approximately 35 microseconds 

to clear the transmit-complete flag and then copy the next character into the transmit 

buffer.
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That is a stark difference in performance for printf between blocking and non-

blocking methods! No application code executes for 12 to 21 milliseconds in the blocking 

implementation, while non-blocking blocks for 1 to 2 milliseconds up front and then 

interrupts for 35 microseconds every 1.2 milliseconds.

MODERN-DAY PRINTF IMPLEMENTATIONS

On a modern 32-bit ARM architecture, developers no longer need to be concerned with 

the timing required to perform printf statements. There are multiple methods available 

to developers that will allow even complex printf statements to be transmitted in 

microseconds.

These implementations include:

	1.	S egger real-time trace debugger capabilities

	2.	U tilizing the ARM ITM module

For debuggers and microcontrollers that do not include these capabilities or similar 

capabilities, developers will still need to be very careful with their printf statements.

Interrupts are not the only method that can be used to minimize how long a 

driver blocks the main application for. Developers can also use the direct memory 

access (DMA) controller. In a DMA implementation, a developer configures the DMA 

Figure 3-11.  UART transmit interrupt duration
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controller to interrupt and handle data movement from memory into a peripheral or 

from a peripheral to memory. The advantage to a DMA is that it is very fast and does 

not require the CPU. The CPU can be in a low-power state or executing other code 

while the DMA controller is moving data around the system. Considering the printf 

example, a developer could set up a memory buffer, then configure the DMA to transmit 

x characters from the buffer and into the UART transmit buffer. This implementation 

would then remove the periodic interrupt and allow the CPU to focus on the application 

code. An example of how a DMA setup would look can be found in Figure 3-12.

RAM

DMA Peripheral

Figure 3-12.  DMA-controlled data transfer

DMA is a powerful tool for developers but can be a complicated topic for a first-

time user. Using DMA can also add unnecessary complexity to the software or result 

in abstractions and data movement that is not obvious from a quick look at the 

system. The efficiency can be well worth the trouble, however. Just don’t forget: most 

microcontrollers have a limited number of DMA channels, so use them wisely!
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CASE STUDY—USING DMA FOR ATTITUDE DETERMINATION AND CONTROL

Back when I was working on my master’s degree at the University of Michigan, I was involved 

in the embedded-software design and implementation for a small satellite. My primary focus 

was the main flight-computer code that interacted with a half dozen or more subsystems 

and orchestrated the behavior for the entire satellite. One such subsystem was an Attitude 

Determination and Controls (ADACs), and it was experiencing issues retrieving and analyzing 

its data. Periodically, data would be lost as if the processor did not have enough throughput to 

handle the data stream.

As I sat down to review the firmware with the younger and less experienced engineer, I 

discovered that the implementation was flawless. The processor just could not keep up with 

the data rate, analysis, and communication simultaneously. Changing the processor was not 

an option. The alternative and only chance was to use the DMA to handle the data acquisition 

and memory storage and relieve the CPU of the responsibility. After a few short discussions 

and what could not have been more than an hour of updates to the drivers and software, the 

ADACs subsystem was operating flawlessly.

All that was needed was offloading some data handling from the CPU to the DMA controller.

�Driver Component Definition
At times, it feels like there are a million different terms that float around the software 

development process. In some cases, these terms are used interchangeably even though 

there may be slight differences. In this section, we are going to explore the terms that are 

most often associated with drivers and framework development in the hopes that we 

can elucidate them while at the same time describing how to organize a driver from a 

high level.

A module is the fundamental unit that is used to develop a driver (or even embedded 

software in general). Simple drivers will contain a single module, while a complex 

driver such as a Wi-Fi driver may contain a dozen modules. A module is simply the 

combination of a header file and the source file that is associated with it. The header file 

contains the interface or the APIs that are used by the higher-level application code to 

run the module code. The source file contains the implementation details and all the 

details required to do the work that is exposed in the interface.
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As very simple drivers, modules may sometimes even be referred to as components. 

A component is a collection of modules that work together to fulfill a software feature. 

A complex driver, like the Wi-Fi driver, is a single component that may be made up of 

several modules. Very simple components may simply have their header and source files 

added to a project. Complex components usually have a folder structure associated with 

them so that the component can be organized and kept separate from other code.

A driver will typically have at least three different files associated with it:

•	 The interface

•	 The source code

•	 A configuration module

How these three pieces are organized is completely up to the developer. In some 

cases, a developer may choose to create a folder for the entire component and include 

all these pieces together at the component’s top level. In other cases, a developer may 

decide to create separate folders, one for each piece. There are many possibilities for 

how a component can be organized. A few examples can be seen in Figure 3-13.

Figure 3-13.  Component organization
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DEFINITIONS

Module is part of a program that contains one or more routines. One or more independently 

developed modules make up a program.3

Component is an identifiable part of a larger program or construction. A component provides a 

specific function for the application. An application is divided into components that in turn are 

made up of modules.4

Interface is a boundary across which two independent systems meet and act on or 

communicate with each other.5

�Naming Convention Recommendations
There are many ways that a developer can go about naming their interfaces, modules, 

and variables. It can be very tempting to create a new naming convention to stand out 

from the crowd. The problem with creating a new naming convention is that there are 

already great systems in existence for how a developer should name things. A great 

example that developers should examine can be found in the following article:

“Perfecting Naming Conventions”6 by Jack Ganssle

Both articles provide developers with a foundation for naming that would be 

wise to adopt. There are a few ideas that I would like to highlight that I believe are 

critically important. First, developers need to use camel case. This is a widely-accepted 

standard within the software industry and deviating from it will dramatically affect code 

readability. Personally, I prefer to also capitalize the starting character in variables. That 

could just be the proper English showing through from doing so much writing.

3�https://www.techopedia.com/definition/3843/module
4�http://whatis.techtarget.com/definition/component
5�www.webopedia.com/TERM/I/interface.html
6�http://www.ganssle.com/articles/namingconventions.htm
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Another convention that I highly recommend is to start with the subsystem and then 

work toward the specific. For example, an interface that is going to provide a read of the 

digital input/output peripheral would be named:

Dio_Read

The first three letters specify the subsystem followed by an underscore and then the 

purpose. This convention flows naturally and makes it very easy for a developer to first 

see the main actor and then the purpose for the interface.

�Object-Oriented Programming in C
Developers should consider developing their drivers and their application code in 

an object-oriented manner. The C programming language is not an object-oriented 

programming language. C is a procedural programming language where the 

primary focus is to specify a series of well-structured steps and procedures within 

its programming context to produce a program.7 An object-oriented programming 

language, on the other hand, is a programming language that focuses on the definition of 

and operations that are performed on data.

There are several characteristics that set an object-oriented programming language 

apart from a procedural language. These include:

•	 Abstraction

•	 Encapsulation

•	 Objects

•	 Classes

•	 Inheritance

•	 Polymorphism

Despite C not being object-oriented, developers can still implement some concepts 

in their application that will dramatically improve their software. While there are ways 

to create classes, inheritance, and polymorphism in C, if these features are required, 

developers would be better off just using C++. Applications can benefit greatly from 

using abstractions and encapsulation. Let’s explore these concepts in detail.

7�https://www.techopedia.com/definition/8982/procedural-language
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DEFINITIONS8

Abstraction is revealing functionality and software features while hiding the implementation 

details.

Encapsulation is wrapping related data and code together into a single unit.

Objects are any entity that has a state or known behavior.

Classes are a logical software entity that is a collection of objects.

Inheritance is when a class inherits the characteristics of another class.

�Abstractions and Abstract Data Types (ADTs)
An abstraction hides the underlying implementation details while making the 

functionality available to developers. For example, a well-implemented GPIO driver 

will provide an interface that tells a developer what can be done with the driver, but the 

developer doesn’t need to know any details about how the driver is implemented or even 

on what hardware it runs. Abstractions hide the details from developers, creating a black 

box that simplifies what they need to know to use the software.

Abstractions don’t only apply to component interfaces. Abstractions can just as 

easily be applied to data types. Abstract data types (often written as ADT for short) are 

data types whose implementation details are hidden from the view of the user for a 

data structure. There are several different methods that can be used to create an ADT in 

C. One method that is straightforward can be done in five easy steps. Let’s look at how 

we can create an ADT for managing a memory stack.

First, a developer defines the abstract data type. The ADT in C is usually defined as a 

pointer to a structure. The ADT is declared within a header file without any underlying 

details, leaving it up to the implementer to fully declare the ADT in the source module. 

An example of an ADT would be a StackPtr_t, NodePtr_t, or QueuePtr_t, to name 

a few. If a developer were to define an ADT for a stack, they would start by defining 

the code shown in Figure 3-14 in the stack.h file. The details for the members in 

StackStruct_t are completely hidden from the users’ perspective. Any interaction with 

StackPtr_t must be done using predefined operations.

8�http://www.javatpoint.com/java-oops-concepts
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The second step to creating an ADT is to define the operations that can be performed 

on the data. The operations that may be performed on an ADT are completely 

dependent on the purpose of the ADT. For example, an ADT for a stack might include the 

following operations:

•	 initialization

•	 pushing data

•	 popping data

•	 destroying the stack

•	 checking to see if the stack is full

•	 checking to see if the stack is empty

Don’t forget that using an ADT is quite different from the way a developer would 

normally manipulate data. Typically, a developer would define the data and write 

code that directly manipulates the data. With an abstract data type, developers create 

an interface where the data is indirectly modified behind the scenes, leaving the 

implementation to the ADT implementer and letting the application developer simply 

use the data type.

Next, the ADT interface specification needs to be completed. The interface 

specification includes the function prototypes for all the public operations that can 

be performed on the ADT. The interface specification will be in the ADT header file. 

Considering the stack example, a developer might find that the interface specification 

looks something like the code shown in Figure 3-15.

Figure 3-14.  Defining an ADT

Figure 3-15.  Stack ADT interface
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Next, the ADT developer would either create the ADT implementation or a template 

for the implementation that would be filled in later. The ADT implementation could 

change from one application to the next. In fact, the ADT implementation could 

change during project development, and one major benefit to using an ADT is that 

the application that uses the ADT doesn’t need to change. The implementation details 

are in the source module and “hidden” from the higher-level application developer. 

The use of an ADT provides a developer with a high degree of flexibility. An example 

implementation for the stack ADT can be found in Figures 3-16 through 3-19.

Figure 3-16.  ADT implementation data structure

Figure 3-16 shows the implementation for the ADT. The implementation structure 

uses an array with a predefined size to store the stack value and then has a position 

member to track where in the stack the next value will be added or removed.
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The example implementation doesn’t even allocate the memory for the stack until 

runtime. The Stack_Init function is used to dynamically allocate memory for the 

ADT. The user has no clue what the implementation does or how it does it and truthfully 

doesn’t need to know or care! (Unless it could affect the real-time performance.) All the 

application code needs to do is create a pointer that will be used to store the location for 

the stack. That pointer should never even be used by the developer directly but only be 

used as the data object that is going to be manipulated by the operation functions.

The initialization function for the stack in this implementation is providing a robust 

implementation. First, it is checking the malloc return value, which will return zero if the 

memory could not be allocated. If everything goes as expected, the implementation will 

initialize the stack location member and set the return value.

Figure 3-17.  Stack method initialization
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The final step to creating the ADT is to put the ADT to the test. The ADT can be tested 

by writing some application code. The application code should declare an ADT and 

then manipulate the data through the interface specification. An example initialization 

and test for the stack ADT is shown in Figure 3-20. In the example, the stack.h header 

file is included in the application. The ADT from the user application’s point of view is 

nothing more than a pointer. The Stack_Init function is called, which then performs 

the operation on the stack data to allocate memory and prepare it for use.

Figure 3-18.  Stack ADT push method
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Figure 3-19.  Stack ADT pop method

Figure 3-20.  Using the stack ADT

Finally, some data is pushed onto the stack by calling Stack_Push. Note that in the 

example application we are not checking the return values. This is something that a 

developer should do but that the author decided to not show at this point in time.

Creating an ADT is as simple as that! Using them in your software will hide the 

implementation details of a data structure, thus improving software maintenance, reuse, 

and portability. Developers who use ADTs will find that they are able to quickly adapt to 

changing requirements and save time by not having to dig through code searching for 

obscure data references.
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�Encapsulation and Data Hiding
Encapsulation and data hiding are an important concept that embedded-software 

developers should follow. Encapsulation is the idea that related data, functions, and 

operations should all be wrapped together into a single unit. For example, all the general-

purpose input and output operations would be wrapped together in a single GPIO 

module. Any operations and data that involve the GPIO would be put into that module.

The idea can go even further by considering data hiding. Data hiding is where 

developers hide the data and the implementation from the module user. It’s not 

important that the caller understand the implementation, only how to use the interface 

and what its inputs and outputs are.

�Callback Functions
Callback functions are an essential and often critical concept that developers need 

in order to create drivers or custom libraries. A callback function is a reference to 

executable code that is passed as an argument to other code that allows a lower-level 

software layer to call a function defined in a higher-level layer.9 A callback allows a driver 

or library developer to specify a behavior at a lower layer but leave the implementation 

definition to the application layer.

DEFINITIONS

Callback is a reference to executable code that is passed as an argument to other code that 

allows a lower-level software layer to call a function defined in a higher-level layer.

A callback function at its simplest is just a function pointer that is passed to another 

function as a parameter. In most instances, a callback will contain three pieces:

•	 The callback function

•	 A callback registration

•	 Callback execution

9�https://en.wikipedia.org/wiki/Callback_(computer_programming)
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Figure 3-21 shows how these three pieces work together in a typical callback 

implementation.

Driver
Library 
Kernel

Application

CallbackMain

Callback_Register

Signal Handler

Invoke
Callback

Figure 3-21.  Callback example usage

First, a developer creates the library or module that will have an implementation 

element that is determined by the application developer. An example might be that 

a developer creates a GPIO driver that has an interrupt service routine whose code is 

specified by the application developer. The interrupt could handle a button press or 

some other functionality. The driver doesn’t care about the functionality, only that at 

runtime it knows what function should be called when the interrupt fires. The code that 

will invoke the callback function within the module is often called the signal handler.

Next, there needs to be some way to tell the lower-level code what function should 

be executed. There are many ways that this can be done, but for a driver module, a 

recommended practice is to create a function within the module that is specifically 

designed to register a function as a callback. Having a separate function to register the 

callback function makes it very clear to the developer that the callback function is being 

registered to a specific signal handler. When the register function is called, the desired 

function that will be called is passed as a parameter into the module, and that function’s 

address is stored.

Finally, the application developer writes their application, which includes creating 

the implementation for the callback and initialization code that registers that function 

with the library or module. When the application is executed, the low-level code has the 
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callback function address stored, and when the feature needs to execute, it dereferences 

the callback function and executes it.

There are two primary examples that a developer can consider for using callbacks. 

First, in drivers, a developer will not know how any interrupt service routine might 

need to be used by the end application. If the developer is creating a library for some 

microcontroller’s peripherals, a callback could be used to specify all the interrupts’ 

behaviors. Using the callback would allow the developer to make sure that every 

interrupt had a default service routine in the event that the application developer did not 

register a custom callback function. When callbacks are used with interrupts, developers 

need to keep in mind that the best practices for interrupts need to be followed.

Second, callbacks can be used whenever there is common behavior in an application 

that might have implementation-specific behaviors. For example, initializing an array is 

a very common task that needs to be performed within an application. What if, for some 

applications, a developer wants to initialize array elements to all zeroes, while in another 

application they want the array elements initialized to random numbers? In this case, 

they could use a callback to initialize the arrays.

Examine Figure 3-22. The ArrayInit functiontakes a pointer to an array with 

element’s size and then it also takes a pointer to a function that returns integers. The 

function at this point is not defined but can be defined by the application code. When 

ArrayInit is called, the developer passes in whatever function they choose to initialize 

the array elements. A few example functions that could be passed into ArrayInit can be 

seen in Figures 3-23 and 3-24.

Figure 3-22.  Function with callback
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The functions Zeros or Random are passed into ArrayInit depending on how the 

application developer wants to initialize the array.

�Error Handling
One of the biggest problems with the C programming language is that there really is 

not a great way to do error handling or error trapping. Object-oriented languages have 

the ability to try a code block and if an error occurs to catch the error. C has no such 

capability. The best that C offers is the ability to check a function’s return value.

The problem with checking a function’s return value is that developers are really 

really bad at checking return values. It is not mandatory that return values are checked, 

so many developers will just ignore them. Ignoring return values is of course just bad 

discipline. In many circumstances, error handling in C is done by returning error codes 

or that the function completed successfully.

So, how can a developer handle errors in their drivers? The best approach that 

developers can take is to create a list of all the possible errors that can occur in the driver 

that they are creating. From that list, create an enumeration that contains all the error 

codes. Review the list and identify errors that the driver needs to actively manage. These 

errors might include transmit flag complete never sets, receive flag complete never sets, 

Figure 3-23.  Initialize elements to 0

Figure 3-24.  Initialize elements to random numbers
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transmission is interrupted, and so forth. Do everything necessary to try to recover from 

an error state, and if the driver is unable to do so, don’t hang there forever, but rather 

return an error code that can help developers debug the problem.

�Leverage Design Patterns
Over time, as developers get more experience, they begin to realize that there are many 

design patterns in embedded software that appear frequently. A design pattern is a 

general reusable solution to a commonly occurring problem.10 Using a design pattern 

that already exists and solves a common design problem can dramatically speed up 

software development and ensure a more robust solution. There are many design 

pattern examples that embedded software developers can utilize. A great example is the 

design pattern that is used to receive serial data on a UART.

The design pattern for receiving and processing serial data can be seen in Figure 3-25. 

An interrupt is used to receive a single character from the UART. The character is read into 

a buffer and then a signal is used to notify a task that there is a character that is ready to 

be processed. The design pattern is simple, but it does quite a few things for a developer, 

such as:

•	 Minimizes software overhead that would be associated with a polling 

architecture

•	 Minimizes processing in an ISR by only reading in the character

•	 Handles the hard real-time requirement (receiving a character) 

and signals another task to handle the soft real-time requirement 

(processing data)

•	 Provides deterministic behavior to the system

10�https://en.wikipedia.org/wiki/Software_design_pattern
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Serial BusRead Character

Store In Buffer

Signal Data Available

Uart Rx ISR

Serial Processing Task

Process Data

Receive Signal

Figure 3-25.  UART Receive design pattern

Design patterns are the puzzle pieces that can be used to quickly build an embedded 

system. The more that an application can leverage design patterns, the faster the 

software can be developed. Many drivers will adhere to very common design patterns 

that we’ve already discussed in this chapter, such as blocking and non-blocking 

architectures. Later in the book, as we dive into specific examples for developing 

different peripheral drivers, these design patterns will become clearer.

�Expected Results and Recommendations
So far in this chapter, we have explored quite a few concepts that will help developers 

think through how they should organize and begin implementing their device drivers. 

There are many benefits to the techniques that we have discussed, which include a more 

organized, maintainable code base. There are several results related to the software that 

developers need to be aware of.

First, organizing the code base into components creates a very organized project. 

Components are easy to move from one project to the next and easy to find in the project 

structure. One potential drawback to organizing a project in this manner is that the more 

modules that are added to a project, the more files in the project, which then leads to 

more folder structures. The result can be:

•	 Slower compile times due to opening and closing so many files

•	 Complex include list since each component will need to be added to 

the compiler and linker include path
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In general, these are minor issues, and developers should not let them get in their 

way when developing organized drivers. It’s just important to recognize that it isn’t all 

red roses and green grass.

Second, assertions are great for verifying that an assumption for inputs, pre-

conditions, post-conditions, and so forth are correct, but they aren’t exactly free. 

Every expression that is evaluated in the assertion uses up some processing time to be 

evaluated. While this may only be a few dozen instructions and execute very quickly, it 

can influence the real-time system performance. Even worse than the performance, the 

assertion takes up a little bit of code space on the microcontroller. Over time, a project 

can easily contain an assertion density approaching 3 to 5 percent, which may make 

the code look significantly bloated. These are reasons why assertions are often disabled 

before testing and production release.

Third, developers need to make sure that they are careful when they use callbacks. In 

many cases, callbacks register a function to an interrupt service routine. Since callbacks 

execute in an interrupt, they need to be short, fast, and to the point. Developers need to 

make sure that they follow best practices for using callbacks, which were discussed in the 

callback section.

Finally, developers need to be careful how far they carry the “object-oriented C” 

concept. It’s a great idea to encapsulate data, use a few abstract data types, and so forth, 

but eventually a point will be reached where it may just make sense to upgrade to C++. 

I’ve had the pleasure of teaching a session once on how to create a class using the C 

language (not by choice). If you need full object-oriented behavior, just use an object-

oriented language.

�Going Further
There are several activities that readers can perform in order to consolidate the driver 

concepts that we have just discussed. Drivers are an important foundation in embedded 

systems, and it is critical to have a clear understanding of these basic concepts. Some 

additional activities that are recommended include:

•	 Find the memory map for your favorite processor. What memory 

regions do the following occupy?

•	 Flash

•	 RAM
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•	 GPIO

•	 SPI

•	 Are there any memory-map holes that you can find? Are there any 

memory regions where the memory can be expanded?

•	 Make a list of all the inputs, outputs, pre-conditions, and post-

conditions that would be associated with a GPIO driver.

•	 In your favorite IDE, review how to enable assertions. Create an 

example application with printf and assert. Create a simple 

function and explore the following:

•	 How to use printf and assert

•	 The timing to use printf

•	 The overhead associated with assert

•	 Practice enabling and disabling assertions. Can you measure the 

effect this has on your code?

•	 Define your own coding conventions.

•	 How are you going to organize your software components?

•	 What naming conventions are you going to use?

•	 Identify any other conventions that you will use when developing 

software going forward.

•	 Test your skills by creating an abstract data type. Follow the stack 

example and implement the stack ADT. Developers interested in the 

Stack example source can download it here.11

•	 Create a simple callback function application that initializes an array. 

Create a callback to initialize an array to all zeroes and another to 

initialize the array to random numbers.

11�http://www.beningo.com/wp-content/uploads/Downloads/ATP.zip
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CHAPTER 4

Writing Reusable Drivers

“Software is like entropy. It is difficult to grasp, weighs nothing, and obeys 
the second law of thermodynamics; i.e., it always increases.”

—Norman Ralph

�Reusable Drivers
Writing a driver that can be used from one application to the next can be very helpful to 

embedded-software developers. Once a driver is written, developers can focus on the 

application code and not worry about the bits and the bytes. Driver design patterns can 

be reused not only on the same hardware, but also across multiple platforms with only 

minor changes required to adjust the driver to access the different memory regions.

In this chapter, we will examine the different methodologies that developers can use 

to map into peripheral memory, and then we will demonstrate how each technique can 

be used.

�Deciphering the extern and static Keywords
The default linkage for a variable and function in the C programming language is extern. 

Having an extern default linkage means that all functions and any variables defined at 

the file scope are global variables and functions. In general, having global variables and 

making all functions available within a program is not a good programming practice. If 

everything in an application can be potentially touched and manipulated by any other 

part of the application, there is an increased probability that multiple points in the 

application may use a global variable without protecting its access, and this can result in 
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a bug. These bugs are usually difficult to find and reproduce, which makes them time-

consuming to fix.

One programming language best practice is to limit the scope of all variables and 

functions. Keep data and functions need-to-know. Keeping the scope limited will 

prevent another application component, or a developer, from accidentally misusing or 

trampling over data that they are not supposed to be using.

Junior-level embedded-software developers will often be aware that using global 

variables is a frowned-upon practice and will avoid using the extern keyword. The 

problem is that by default the extern keyword is implicitly placed before functions and 

variables at a file-scope level. This means that if you don’t specify the linkage type, the C 

language toolchain will make everything global!

For example, look at the simple module shown in Figure 4-1. The module looks 

completely valid. The module would compile without errors or any warnings. However, 

to the compiler and linker, the application shown in Figure 4-1 looks like the program 

shown in Figure 4-2.

Figure 4-1.  extern implicitly

Chapter 4  Writing Reusable Drivers



97

In C, the best way to control the default external linkage in a component is to employ 

the static keyword. This is a storage-class specifier that tells the compiler to limit the 

variable’s or function’s scope while at the same time telling it to allocate storage for the 

variable that will persist throughout the application’s lifetime.1 Static overrides those 

implicit extern keywords that are automatically put in front of functions and variables 

and instead makes those variables and functions internally linked. The result: variables 

and functions that are only available within a single module. Figure 4-3 shows how 

static would work in the program that previously had external linkage.

1�C in a Nutshell, pages 156, 165

Figure 4-2.  extern explicitly

Figure 4-3.  Explicitly limiting function and variable scope
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�Deciphering the volatile Keyword 
There are times in an embedded-software application where the application will be 

dependent upon changes in the physical hardware. The software will need to read a 

hardware flag, such as a UART transmission-complete flag. A simple example of what 

this code might look like can be seen in Figure 4-4. The code first defines a pointer to the 

location in memory where the UART_REGISTER is. The code then waits in a while loop for 

the UART_TX_FLAG in the UART_REGISTER to be set.

The problem with the code in Figure 4-4 is that the compiler will look at the code and 

realize that in the while loop, UART_REGISTER & UART_TX_FLAG is a constant expression. 

Nowhere in the software does that value ever change! So, the compiler will do what it is 

designed to do and optimize the code to something like Figure 4-5.

The resulting application that is shown in Figure 4-5 is obviously not what the 

developer had intended, but it does teach an important lesson. When accessing 

hardware, developers need to reach into the C programming toolbox and pull out the 

volatile keyword. This instructs the compiler to reread the object’s value each time it is 

used, even if the program itself has not changed it since the previous access.2 A developer 

2�C in a Nutshell, pages 53, 127

Figure 4-4.  Checking for the UART Tx Complete flag

Figure 4-5.  The optimized UART Tx Check code
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can prevent the optimized code generation shown in Figure 4-5 by declaring the value 

being pointed to by UART_REGISTER as volatile. By doing this, the compiler will recognize 

that the expression in the while loop could change at any moment and the value should 

be reread to see if it has changed. The updated application can be found in Figure 4-6.

Figure 4-6.  Using the volatile keyword to prevent code optimization

Note where the volatile keyword is located in the updated code. The C statement 

is declaring UART_REGISTER as a pointer to a volatile uint8_t. The data is volatile, not 

the pointer. The code shown in Figure 4-7 is an example of the wrong place to put the 

volatile keyword. The example is showing a volatile pointer to a uint8_t. In general, 

having a pointer to a hardware register change is not something that we would want to 

have happen in an embedded system.

Figure 4-7.  Improper volatile keyword location

�Deciphering the const Keyword 
The const keyword can sometimes be deceptive in the C programming language.  

A developer may think that a const is a variable that is constant and cannot be modified 

by the application. The const keyword tells the developer that the data location that 

is being accessed through the identifier with the const keyword is read-only.3 If the 

3�C in a Nutshell, page 57
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variable that is being defined as const exists in RAM, a developer could conceivably 

create a pointer to the constant variable, typecast off the const, and then change the 

value. In many cases, variables declared const in an embedded system will not be stored 

in RAM but instead will be in flash. This prevents the constant data from being modified 

and really does make const data constant.

A best practice for developing embedded software is to use the const keyword as 

often as possible.4 The const keyword does provide a developer some protection through 

the compiler if an attempt is made to change the value of an identifier. The primary 

places that developers should look to use the const keyword are:

•	 When passing data to a function that should not be modifying  

the data

•	 Pointers to hardware registers that should not change during runtime

In general, true constants such as Pi or unchanging configuration values are 

defined not through identifiers but through enumerations or the #define macro, with 

enumerations being the preferred method.

In the previous section, while looking at the volatile keyword, we saw a pointer 

being defined that accessed a hardware register. A variable that is being used to access 

hardware probably should not change during runtime. That code could be modified so 

that the pointer is defined as const and thus will always point to the correct place in the 

hardware memory map to access the UART_REGISTER. The updated code example can be 

seen in Figure 4-8. In the example, UART_REGISTER is a constant pointer to data located at 

0x100000, which can change at any time (volatile) and is a uint8_t data type.

4�Barr Group Best Practices (Embedded C Coding Standard, page 23)

Figure 4-8.  A const pointer to a volatile uint8_t
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�Memory-Mapping Methodologies
There are several options available to developers to map their code into the 

microcontroller’s memory regions. The technique used is going to be dependent upon 

an engineer’s need to control:

•	 Code size

•	 Execution speed

•	 Efficiency

•	 Portability

•	 Configurability

The simplest techniques tend to not be reusable or portable, while the more complex 

techniques are. There are several memory-mapping techniques that are commonly used 

in driver design. These methods include the following:

•	 Direct memory mapping

•	 Using pointers

•	 Using structures

•	 Using pointer arrays

Let’s examine the different methods that can be used to map a driver to memory.

�Mapping Memory Directly
Once a developer has thought through the different driver models that can be used 

to control the microcontroller peripherals, it is time to start writing code. There are 

multiple techniques that a developer could use to map their driver into the peripherals’ 

memory space, such as directly writing registers or using pointers, structures, or pointer 

arrays.

The simplest technique to use—and the least reusable—is to write directly to a 

peripheral’s register. For example, let’s say that a developer wants to configure GPIO Port 

C. In order to set up and read the port, a developer can examine the register definition 

file, find the correct identifier, and then write code similar to that seen in Figure 4-9.
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Writing code in this manner is very manual and labor intensive. The code is written 

for a single and very specific setup. The code can be ported, but there are opportunities 

for the wrong values to be written, which can lead to a bug and then time spent 

debugging. Very simple applications that won’t be reused often use this direct register 

write method for setting up and controlling peripherals. Directly writing to registers in 

this manner is also fast and efficient, and it doesn’t require a lot of flash space.

�Mapping Memory with Pointers
While directly writing to registers can be useful, the technique is often employed 

for software that will not be reused or that is written on a very resource-constrained 

embedded system, such as a simple 8-bit microcontroller. A technique that is commonly 

used when reuse is necessary is to use pointers to map into memory. An example 

declaration to map into the GPIO Port C register—let’s say it’s the data register—can be 

seen in Figure 4-10.

Figure 4-9.  Direct register access

Figure 4-10.  Mapping a pointer to GPIO Port C

Now, the code in Figure 4-10 has a problem! There is a real possibility that if we try 

to write code to read the port or a bit on the port the compiler will optimize out the read! 

The compiler will see a while loop that is checking a bit state in the register, as shown 

in Figure 4-11, and decide that since there is no place in the while loop that changes 

the values stored in the location pointed to by Gpio_PortC, there is no reason to keep 

reading the value, and that reading the memory location can be optimized out.
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In order to resolve this issue, developers need to use the volatile keyword. 

Volatile essentially tells the compiler that the data being read can change out of 

sequence at any time without any code changing the value. There are three places that 

volatile is typically used:

•	 Variables that are being mapped to hardware registers

•	 Data being shared between interrupt service routines and application 

code

•	 Data being shared between multiple threads

Volatile basically tells the compiler to not optimize out the read but instead make 

sure that the data stored in the memory location is read every time the variable is 

encountered.

The location that volatile appears in the declaration is critical to properly mapping 

a peripheral register. Declaring a pointer to a register using the following statement 

tells the compiler that the pointer is volatile, not the data being pointed to. The code in 

Figure 4-12 is saying the pointer could change at any time when in fact it’s the data in the 

register being pointed to that can change.

Figure 4-11.  Checking a register bit

Figure 4-12.  Incorrectly using the volatile keyword for pointer data

The correct declaration would place the volatile keyword immediately following 

the data pointer and not immediately after the pointer, as shown in Figure 4-13.
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This code tells the compiler that Gpio_PortC is a pointer to a volatile uint32_t. 

Remember, when reading a declaration like this, start reading just to the left of 

the identifier and read from right to left. This will help provide clarity to the actual 

declaration. (I highly recommend reading the section “Complex Declarators” from the 

book Expert C Programmers,5 which provides general advice for figuring out what a 

declaration means).

With the volatile keyword in the correct place, we now know the compiler won’t 

optimize out reading the variable. However, there still is a problem with the declaration 

the way it has been written. Take a moment to examine the code shown in Figure 4-14.

It is perfectly legal to increment our pointer Gpio_PortC. After incrementing the 

pointer, we could be pointed at Port D, a different register in Port C, or even an SPI or IIC 

peripheral. Once a pointer is mapped into memory, a developer should not be allowed 

to increment, decrement, or modify the location for the pointer. This is extremely 

dangerous! So instead, in our declaration, we should declare our pointer to be constant, 

as shown in Figure 4-15.

5�Expert C Programming: Deep C Secrets, Peter Linden (Prentice Hall, 1994)

Figure 4-13.  Correctly using the volatile keyword for pointer data

Figure 4-14.  Accessing memory to a non-constant pointer

Figure 4-15.  Constant memory-pointer declaration
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Adding the const keyword now makes it so that Port C is a constant pointer to 

a volatile uint32_t, and any attempts to increment or decrement the pointer in the 

source code will result in a compiler error. Using const in this way is critical to writing 

robust code, and yet if you peruse example code or the register definitions provided by 

microcontroller suppliers, you will find that the majority ignore this fact and allow their 

memory-mapped pointers to be modified within the source.

�Mapping Memory with Structures
The next technique, and probably the most common technique provided by 

microcontroller vendors, is to use structures to map into memory. Structures provide 

developers with a way to create data members that directly map to a memory location. 

The C standard guarantees that if I create data members in a structure, they will appear 

in the same order without padding. The result is the ability to create structure pointers 

that directly map into a peripheral’s memory space, as shown in Figure 4-16.

Figure 4-16.  Mapping a structure into 32-bit memory

Figure 4-17.  Declaring a peripheral base pointer based on structure

The structure needs to have each member match the order in order for the 

peripheral registers to map properly. Also notice in the declaration that the structure is 

abstracting the details for creating a pointer to the structure. With the structure declared 

in this manner, a developer could access the peripheral by using the code in Figure 4-17.
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I’m not really a big fan of using macros in this way, although when searching through 

microcontroller-supplied code you will find that it is quite rampant. An alternative would 

be declaring PORTC_BASE_PTR as a standard identifier using the code shown in Figure 4-18.

Figure 4-18.  Defining and using the memory-mapped structure

Using structures to map memory can be efficient and provide developers with a 

way to start creating reusable mapped drivers. Using standards such as ARM® Cortex® 

Software Interface Standard (CMSIS) can provide a common and reusable method for 

accessing peripheral registers that improves portability. Unfortunately, as of this writing, 

many vendors will still use their own naming conventions, which still requires a fair 

amount of work to adapt to different microcontrollers.

�Using Pointer Arrays in Driver Design
A unique method for mapping memory is to use a pointer array. A pointer array is an 

array where each array element is a pointer. For an engineer developing a driver, every 

element in the pointer array will point to a peripheral register for a single register type. 

For example, a developer would create a pointer array to set the data output on the GPIO 

ports by including a pointer to the data registers PORTA, PORTB, PORTC, and so forth. 

A second pointer array would be created to hold all the GPIO direction registers for the 

ports. A pointer array would be created for each register type on the peripheral, with 

each entry representing a channel.

There are many benefits to using pointer arrays to map memory in an embedded 

system. First, it allows a developer to group registers into logical channels. Second, 

initialization functions can be written such that they loop through each index in the 

array, which greatly simplifies the initialization function. Not only is the initialization 

simplified, but using pointer arrays also creates a design pattern that can be easily reused 

and ported from one application to the next and one platform to the next.
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Pointer arrays also help to abstract out the hardware and convert registers into 

something more readable and understandable by human programmers. Developers can 

create easy-to-understand function names that access the pointer arrays and handle the 

details behind the scenes. Initialization structures can even be created that allow a table 

to be passed into a driver to initialize the peripheral, once again creating a common, 

standard framework that can be reused and easily ported.

Despite the powerful capabilities and portability that pointer arrays bring to the 

programming table, there are a few drawbacks that developers need to be aware of. First, 

creating pointer arrays will increase the program size when compared with structure 

or direct-access memory-mapping methods. The reason for the program increase is 

that there are now additional arrays that are storing pointers, and above that there is a 

configuration table that will be stored in flash that contains the initialization information 

for every peripheral and channel. The program size increase isn’t terribly significant, but 

if a developer is limited to a microcontroller with a few thousand kilobytes of flash space 

then it will quickly fill with initialization data.

Second, since the peripherals are being accessed through a pointer array, there 

can be a performance hit a few clock cycles long when accessing low-level drivers. 

If a developer is using an old 8-bit microcontroller running at 8 MHz, there could be 

a big problem. Using a modern-day processor such as a 32-bit ARM Cortex-M, the 

performance difference is not noticeable in most applications. That said, a developer still 

needs to make sure that they monitor their system’s performance.

When comparing the cost and development times to using structures or direct 

memory-mapping methods, pointer arrays provide developers with a flexible, reusable 

design pattern that is easily scalable and adaptable. Let’s examine how we could map 

memory to a timer peripheral using the pointer array mapping technique.

�Creating a Timer Driver Overview
Nearly every embedded system uses an onboard timer to keep time. A timer will often be 

running at one or ten milliseconds and coordinating with a scheduler to run the system. 

Every microcontroller will have slightly different capabilities as it pertains to the timer 

peripheral, but there are some commonalities among all microcontrollers. In order to 

determine the timer capabilities and build the infrastructure necessary to create a timer 
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driver that can be reused and follows the pointer array memory-mapping methodology, 

there are several steps a developer needs to follow:

•	 Step #1 – Define the configuration table

•	 Step #2 – Define the peripheral channels

•	 Step #3 – Populate the configuration table

•	 Step #4 – Create the pointer arrays

•	 Step #5 – Create the initialization function

•	 Step #6 – Populate the driver interface

•	 Step #7 – Maintain and port the design pattern

These concepts can easily be applied to any peripheral driver.

�Step #1: Define the Timer’s Configuration Table
Before diving deep into the pointer arrays and creating the timer driver itself, it is useful 

to start by considering the configuration parameters that are needed to set up the timer 

peripheral. The reason for this is that developers need to dig through the datasheet to 

determine which registers exist for the timer and what the bits mean in those registers. 

While developers are digging through those registers, it is the perfect time to create the 

configuration table structure that will be used to initialize the peripheral.

For a timer module, one would expect to find registers related to the following:

•	 setting the mode

•	 enabling

•	 setting the clock source

•	 the clock pre-scaler

•	 and so on

The necessary information will be found by looking at each register in the 

timer datasheet and listing them out in a structure. After the configuration list has 

been created, a channel name member can be added that will be used to assign a 

human-readable value. Developers will also want to add a timer-interval value. The 

timer interval will tell the initialization function what the timer tick rate will be in 

Chapter 4  Writing Reusable Drivers



109

microseconds. The initialization function can be written to take the configuration 

parameters for the clock and automatically calculate the register values necessary for the 

timer to behave properly so that the developer is saved the painful effort of calculating 

the register values.

A good practice is to place the structure definition within a header file, such as 

timer_config.h. An example timer configuration structure can be found in Figure 4-19. 

Keep in mind that once this structure is created the first time, it will only require minor 

modification to be used with another microcontroller.

Figure 4-19.  Example timer configuration structure

�Step #2: Define the Timer’s Peripheral Channels
A peripheral channel is an independent hardware module for the peripheral, such as 

Timer0, Timer1, and Timer2. Each timer is separate within the microcontroller but 

usually has the same or similar capabilities as the others. A developer can consider 

every register and configuration value associated with the Timer0 module to be the 

Timer0 channel. There are a few reasons for why a developer wants to create a channel 

definition within the software code base.

First, creating a channel definition allows a developer to create a human-readable 

value that, when included with the configuration table, makes figuring out what the 

configuration is associated with simpler. On a small microcontroller, this may not seem 

like a big deal if there are only two timers, but in a modern, high-end microcontroller 

there could be a dozen timers and looking at a complex configuration table can result 

in confusion. Confusion results in bugs, and we want to minimize bugs as much as 

possible.
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Second, the channel definition will be used by the drivers to access the correct 

element in the pointer array. It is therefore critical to make sure that the channel naming 

order matches the pointer array order. The channels are used in the driver interface and, 

once again, make the code more human readable, as the timer is used throughout the 

application.

The channel definition is nothing more than a simple enum. It lists all the available 

peripheral channels that are available. For example, a microcontroller with three timers 

would list out TIMER0, TIMER1, and TIMER2, as shown in Figure 4-20. In addition to listing 

the channels, it is a good practice to create a final enum element named MAX_TIMER or 

NUMBER_OF_TIMERS that can then be used as a boundary-condition checker.

Figure 4-20.  Timer channel definition

�Step #3: Populate the Timer’s Configuration Table
Once the pieces are in place to define the configuration table, developers can dive in and 

create it. The configuration table should be located in the timer_config.c module. The 

configuration table is going to be nothing more than an array where every element is of 

type TimerConfig_t. Since a developer probably doesn’t want the initialization to be 

changeable during operation, the configuration table should also be declared const. The 

configuration table can also be declared static so that it has internal linkage. A helper 

function can then be created that returns a pointer to the table. The pointer to the table 

is what is then used in the application, and the configuration table itself stays hidden.

An example of the timer configuration table can be seen in Figure 4-21.
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Since the configuration has internal linkage, a developer will need to create a helper 

function that returns a pointer to the configuration table. A simple helper function can 

be seen in Figure 4-22.

Figure 4-21.  Example timer configuration table

Figure 4-22.  Configuration table helper function

Figure 4-23.  Generic pointer array mapping pattern

�Step #4: Create the Timer’s Pointer Arrays
Creating the pointer arrays that map into the peripheral memory space is straightforward 

but can sometimes be confusing. The pointer arrays are going to be located within the 

driver module for the peripheral. For a timer, these would be the timer.h and timer.c 

modules. These modules would contain all the timer driver functions along with the 

timer driver interface.

An array will be created for every common register that exists among the timer 

peripherals. Each array will have a general form, which can be seen in Figure 4-23, 

and will be followed for nearly every memory mapping. The REG_SIZE can simply be 

replaced with the fixed-width integer definition for the target processor. For example, if 

the target is an 8-bit microcontroller, REG_SIZE would be replaced with, or defined as, 

uint8_t. A 32-bit processor would have REG_SIZE defined as a uint32_t.
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The ARRAY_NAME is simply replaced with a description for what the register type 

is that the array is mapping to. CHANNELS can be omitted in the array definition, but 

if a developer is trying to be as explicit as possible, which is always a great idea, then 

specifying the number of elements in the array would be necessary.

It is important to also note that the placement of const and volatile is critical. Placing 

them in a different location will completely change what is constant and whether the data or 

the pointer will be reread at each program encounter. Const is telling the compiler that the 

pointer in the array cannot be changed to point to anything else, keeping our pointers from 

changing. On most compilers, this will also force the array to be stored in flash. Volatile 

is telling the compiler that the data in the register may change unexpectedly, so reread 

the data. A developer may want to go even further by limiting the pointer-array linkage to 

internal by declaring the array static, which is a very good programming practice.

Using the generic definition shown in Figure 4-23, a developer will then need to 

use the definition pattern to create and populate an array with a pointer to the register 

for each peripheral channel. The register definitions are usually already created by 

the microcontroller manufacturer and are sometimes already in a pointer form. In 

most cases, just the addresses for the registers are defined, and the developer must 

typecast the address into a pointer when initializing the array. An example for the timer 

peripheral that shows a few pointer-array definitions can be seen in Figure 4-24.

Figure 4-24.  Example timer peripheral pointer-array initialization

�Step #5: Create the Initialization Function
All the previous steps have been setting up the scaffolding that is required to map into the 

peripheral memory space and configure the driver. Now, it is time to write the function that 

will initialize the peripheral. The greatest advantage to using pointer arrays is that creating 

an initialization function is simple and reusable! The pointer arrays allow a developer to 

create a design pattern that can be reused from one application to the next with only minor 

modifications required to support new microcontrollers. Updating the design pattern for a 

new microcontroller takes just a fraction of the time that it would take to start from scratch.
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The first step to creating the initialization function is to create a function stub for 

Timer_Init that takes a pointer to TimerConfig_t. Don’t forget that TimerConfig_t is a 

structure that contains all the initialization information for the different timer channels. 

Developers should declare the pointer as const so that the initialization code can’t 

accidentally manipulate the pointer. The configuration code is probably stored in flash 

anyway, so it can’t easily be changed without active assistance from the flash controller, 

but it’s a safe programming practice to declare the pointer const anyway.

Before a single line of code is written, it is wise to take a few minutes to develop an 

architectural diagram and a flowchart depicting how the initialization function is going 

to behave. A simple activity diagram for initializing the timers through the configuration 

table and pointer arrays can be found in Figure 4-25. Literally all that is done is that 

the code loops through the configuration table, one entry at a time, and reads the 

configuration setting for the peripheral. The setting is then mapped into the correct 

register and bits before moving on to the next parameter.

Enable Clock

Index < 
Channels? Return from Init()

Reset Timer

Clear Count

Calculate Period

Set Prescalers

Configure Interrupts

Y

N

Figure 4-25.  Timer initialization flowchart
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The result is a simple initialization that just loops through the configuration table 

and then writes to the pointer array. A shortened initialization function example can be 

seen in Figure 4-26. Notice that every pointer-array access requires us to dereference the 

pointer in the array element. Don’t forget that the full source is available with the book 

materials.

The initialization can be written to simplify the application developers’ software as 

much as possible. For example, a timer module could have the desired baud rate passed 

into the initialization, and the driver could calculate the necessary register values based 

on the input configuration clock settings. The configuration table then becomes a very 

high-level register abstraction that allows a developer not familiar with the hardware to 

easily make changes to the timer without having to pull out the datasheet.

Figure 4-26.  Driver high-level loop initialization example
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Figure 4-27.  Timer init loop code
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�Step #6: Fill in the Timer Driver Interface
After completing and testing the initialization function, the driver will require additional 

interfaces to control the timer. A developer may want to add interfaces to enable and 

disable the timer, change the counter interval, and so on. Prior to ever getting to the 

implementation phase, these interface features should have been identified, and with a 

timer initialized they can now be filled in and tested.

The details for how to design the interface will be covered in greater detail later in the 

book. For now, consider the following as example timer-driver functions:

•	 Timer_Init

•	 Timer_Control (Enable/Disable)

•	 Timer_IntervalSet

•	 Timer_ModeSet

�Step #7: Maintain and Port the Design Pattern 
Once the timer driver has been fully implemented, it is possible to use it as a design 

pattern. Nearly every microcontroller will have peripherals on board that have similar 

behaviors and functions. For example, every time module needs to have an enable, a 

clock source, pre-scaler, counter, and so on. The peripherals may exist in a completely 

different memory region and have different names, but that is why the pointer arrays 

come in so handy. Simply update the pointer arrays with the correct register pointers 

and modify the bits that are manipulated, and the driver is now ported to a new 

microcontroller.

Implementing a driver using pointer arrays can decrease the time required to 

implement and test future drivers. There is a simple procedure that a developer can 

follow to update the design pattern for any microcontroller.

•	 Step #1 – Update the configuration table definitions.

•	 Step #2 – Update the configuration table declarations.

•	 Step #3 – Update the pointer arrays.

•	 Step #4 – Update the initialization and driver functions.

•	 Step #5 – Perform regression testing.
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�Selecting the Right Driver Implementation 
So far in this chapter, we’ve examined a few different methods that can be used to map a 

driver into the peripheral memory space. These have ranged from direct register access 

to the more complex pointer array mapping methods. Selecting the right method for the 

job can be difficult, especially if a team wants reuse but has a very resource-constrained 

system.

In order to make an informed decision, developers need to consider a few different 

factors, including:

•	 Code size

•	 Execution speed

•	 Efficiency

•	 Portability

•	 Configurability

Table 4-1 compares the different memory-mapping methods and where they are 

best deployed. Keep in mind that the table is doing a direct comparison, and while 

one method may be mentioned as being least efficient, a developer should take into 

consideration what that really means. It could be that there are a few extra instructions 

generated to access the register by indexing an array and dereferencing a pointer. 

In most applications, the additional instructions won’t really affect the application 

performance, but performing a few experiments can be useful to wrap your mind around 

the best and worst cases.

Table 4-1.  Memory Map Comparison

Mapping Technique Code Size Execution Speed Efficiency Portability Configurability

Direct Register Access Smallest Fastest Most Efficient Least Least

Pointer Structure Average Average Average Average Average

Pointer Arrays Largest Slowest Least Efficient Most Most

In general, the direct register access technique is best used for very resource-

constrained systems with less than 16 kB of code space. These systems typically are 8-bit 

and have clock speeds less than 48 MHz. Pointer-structure mapping is a good general 
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technique that is often used by default by microcontroller manufacturers. Pointer arrays 

really require microcontrollers with at least 32 kB of code space. The main reason is that 

the configuration tables and the pointer arrays can take up code space, which is not 

available in resource-constrained devices.

�Going Further
Let’s examine what you can do to take the concepts we’ve discussed in this chapter and 

start to apply them to your embedded software.

•	 Select a code module in one of your applications. Identify all the 

areas where variables and functions are implicitly declared extern. 

Which ones can be changed to static?

•	 Examine the hardware register mapping file for your microcontroller. 

What keywords are present? const? volatile?

•	 Examine the hardware register mapping file for your microcontroller. 

What memory mapping method is it using?

•	 Examine the datasheet and hardware register files for your 

microcontroller. Write three different timer drivers using each of the 

following methods:

•	 Directly accessing registers

•	 Using structures

•	 Using pointer arrays

Answer the following questions about the drivers:

•	 Which driver was the fastest to implement?

•	 Which has the smallest code size? The largest?

•	 Which is more human readable?
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•	 Port each driver to a different microcontroller using the drivers just 

written as the starting point. Answer the following questions about 

the drivers:

•	 Which driver was the fastest to implement?

•	 Which has the smallest code size? The largest?

•	 Which is more human readable?

•	 Which driver was the easiest and quickest to port?
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CHAPTER 5

Documenting Firmware 
with Doxygen

“Just because you don’t like something doesn’t mean that it isn’t  
helping you.”

—Tim Harford

�The Importance of Good Documentation
Writing and maintaining documentation is highly important, yet it is often a neglected 

element of embedded-software development. Engineers typically start a project strong, 

keeping documentation synchronized with written code. As the project progresses, 

schedule and cost pressures intensify due to antsy clients and perhaps even the boss 

breathing down the developers’ necks. The result is that the developers bury their heads 

in the code and just crank it out as fast as possible. Developers start to take shortcuts to 

save time, such as skipping documentation, telling themselves that once the software is 

written they’ll go back and update the documentation. In reality, the code either goes 

undocumented or is sprinkled here and there with half-thoughts and gibberish in a 

rushed attempt to provide illumination into what has become chaotic.

Documentation is a tedious and unrewarding part of the embedded-software engineer’s 

job. No one wants to do it, yet if it isn’t written, maintaining and updating the code can 

become a nightmare for fellow developers or even for forgetful versions of our future selves. 

There are many benefits to having well-documented embedded software, such as:

•	 Having a reference to look up API and HAL calls (a software manual)

•	 Having a document that communicates implementation details and intent
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•	 Decreased time to train engineers (just review the documentation!)

•	 A clear and concise description of the standards used to develop the 

software, such as coding or industry standards (improved readability)

•	 Improved maintenance and overall costs resulting from having 

access to a reference rather than having to “wing it” and decode large 

amounts of code

•	 Faster speed to make updates and changes to the software

Well-documented embedded software will decrease the time and costs required to 

develop and maintain it, and it can even have the added benefit of decreasing the overall 

stress of a project.

CASE STUDY—A PROJECT WITH NO DOCUMENTATION

Documentation can mean the difference between getting to market quickly or never getting 

to market at all. I had a client who was working on a medical device that was inherited from 

another engineering company. I was called in to review the code that was available and try to 

make heads or tails of what features were completed and where the code stood.

The code existed as a single main.c file of over 100,000 lines of code, with no comments, 

cryptic variable names, and no documentation. After months of analysis, we finally scrapped 

the entire code base and started from scratch. More than six months of previously developed 

effort was lost because the original engineers never bothered to document their work (let 

alone follow any recommended coding practice).

�Easing the Documentation Load
The problem with the way many developers create documentation is that they are 

expected to create multiple documentation sources. They create requirements 

documents, design documents, interface-control documents, and API references and then 

still must comment the source, among other documentation needs. The development of 

documentation that is correct and useful is time consuming. Time consuming means it’s 

expensive too! Most companies are in a hurry to get to market and don’t want to pay the 

documentation price. Yet, good documentation saves time and money in the long run, 

over the product’s total lifetime. So, what can developers do to balance these needs?
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There are two approaches that developers must follow in order to generate 

documentation that is useful and doesn’t require unrealistic amounts of time. First, 

developers need to automatically generate their documentation. There are many tools 

available at freemium or even premium costs that can generate documentation based 

on the organization of the code and the comments associated with it. One such tool, 

Doxygen, will be examined in great detail in this chapter.

Second, developers need to generate all their documentation from a single source. 

While there is a need for requirements, design, and reference manuals, these all need to 

be maintained in a single source that can be used to generate the individual documents. 

Otherwise, if separate sources are used, developers will need to change multiple 

sources every time something changes in the software or in their requirements. Using 

a single source allows the generation tool to scan for changes and make updates to all 

documentation at once.

Even if developers use an automated tool to generate documentation, there is no 

guarantee of success without discipline. Developers must be diligent in making sure 

that the single source is updated as project and code changes are made. There are two 

factors that determine the level of quality one can expect from software documentation: 

whether the team is disciplined and whether they use an automated tool. Figure 5-1 

demonstrates a way that we can think about documentation.

Disciplined

Not Disciplined

AutomatedManual

Sparse Functional /
Accurate 

Minimal /
inaccurate 

Non-existent

Figure 5-1.  Software documentation spectrum
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In the lower left quadrant, we have a team that is not disciplined and generates 

documentation manually, which will result in no documentation at all. These are teams 

that either are set up for failure or will require far more time and money to get their 

product to market and maintain it. Teams in this quadrant are not capable of creating 

portable and reusable firmware, but are instead functional rapid prototypers who can 

make something work on a bench but struggle to get anything production ready.

The lower right-hand quadrant, where we have a team that is not disciplined but 

has an automated tool available, we create minimal documentation that tends to be 

inaccurate. In this circumstance, automated tools are able to parse the general structure 

and flow of the code and identify variables. Something is better than nothing, but the 

documentation tends to be inaccurate due to developers’ not updating code comments 

or adding any comments at all. Developers will still struggle to maintain these systems 

and may be frustrated by incorrect information.

The upper left-hand quadrant, where we have a disciplined team manually 

generating documentation, will result in accurate documentation, but it will generally 

be incomplete and sparse. The reason for this is that such teams need to invest 

large amounts of time, money, and effort to generate their documentation, which 

very few development teams have. The result is that we end up with great high-level 

documentation, but the details tend to be lacking. Many government organizations tend 

to fall into this category, although they happily invest the time and money.

The final quadrant, the upper right, is where developers interested in developing 

high-quality, reliable, portable, and reusable code should aim to find themselves. These 

teams are disciplined, updating code comments and design diagrams as they change. 

They use automated tools to scan their code base and comments to generate their 

documentation. They focus on the end result and generate functional and accurate 

documentation.

�An Introduction to Doxygen
Discipline cannot be taught from the pages of a book, but how to set up and leverage 

automated documentation tools can be. Software tools such as JavaDocs, NaturalDocs, 

and Doxygen are example tools that generate documentation from the code and 

comments. In this book, we will focus on Doxygen, a tool that is open source and widely 

adopted within the software industry.
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“Doxygen is a documentation system for C++, C, Java, Objective-C, Python, IDL 

(Corba and Microsoft flavors), Fortran, VHDL, PHP, C#, and to some extent D.”1 

Doxygen offers several advantages to the software developer who is looking to keep 

their documentation consistent and up to date with what the source code is actually 

doing. Besides its free price, which is hard to beat, Doxygen allows developers to use the 

comments within the header, source, and other text files to generate documentation in 

common formats, such as HTML, RTF, or PDF. Doxygen allows the developer to show 

how a project was implemented by browsing files, classes, modules, variables, and other 

types that are used in the program in addition to generating graphs to show how they 

interact with each other. Doxygen can be considered a way to automatically generate 

a software manual for the project. Developers can even go so far as to document their 

tools, standards, and nearly any other piece of project documentation that might need to 

be generated.

CASE STUDY—SELECTING A DOCUMENTATION TOOL 

A few years before I became a consultant, I was working within the defense industry for a 

small business that had been quite successful but had poor software processes. Despite their 

success, they had nearly no documentation for any of their software and had a fairly high 

turnover rate. One of my primary missions was to help them get their software-development 

process under control and develop documentation.

I developed a few criteria for selecting a documentation tool, such as:

•	 Accepted as an industry standard

•	 Low cost

•	 Updated multiple times per year

•	 Supports multiple programming languages

•	 Outputs HTML, RTF, and LaTeX file formats

•	 Supports multiple comment styles

•	 Strong user base and ecosystem

1�Doxygen, August 2015, www.doxygen.org.
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Doxygen fit these criteria, while another tool favored by a more senior engineer did not. At the 

time, management decided to go with the more senior engineer’s recommendation, and all of 

the software was commented using a proprietary format. The tool was buggy and hadn’t had 

any updates in over two years. Within a year, the tool was officially abandoned and obsolete. 

An expensive and time-consuming effort began to convert the comments to Doxygen.

Doxygen allows just about any kind of data to be added to the documentation, 

including images and equations. All the source code is available and hosted on GitHub, 

which allows a team to dig through the guts of the tool and modify it as needed. More 

important, Doxygen is widely used and supported through various software disciplines, 

and for more than ten years has been providing feature improvements and updates at 

least three times a year. There is no fear of the tool suddenly disappearing or losing its 

place as the standard documentation tool.

�Installing Doxygen
Doxygen is a fairly simple but very configurable and powerful documentation generation 

tool. As developers, we can take advantage of tools such as Doxygen to generate reusable 

code modules that are already documented. We can use Doxygen to create templates 

of software for APIs or HALs that have the interface already predefined and are simply 

waiting for the code for the specific target to be added in order to bring it to life. Since 

Doxygen can be so useful for creating reusable code and interfaces, I believe it is critical 

to walk through the installation process and cover some of its more interesting features. 

You will discover that many of the HAL examples in this book were designed first by 

writing Doxygen comments in header and source files. The implementation of those 

interfaces was then filled in as needed for target applications.

The first and most important step when installing Doxygen is to locate its 

installation file, documentation, and any dependencies. All of the Doxygen installation 

and documentation can be found at www.doxygen.org. The installation files can be 

acquired from the download link located on the top left-hand side of the Doxygen 

website. Doxygen can be downloaded in pure source form from a GitHub repository, or 

individual binaries can be downloaded for one’s platform of choice. While many readers 

may cringe, I mostly use Doxygen on Windows, but there is support for Mac OS and 

Linux, among others. Since I typically use Windows for my development environment, 

there are several additional packages required to generate PDF documents and fancy 
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graphics for call graphs and the like. Before we get into those juicy details, download and 

install Doxygen for your operating system of choice.

Next, download and install Graphviz from http://www.graphviz.org/. Graphviz 

is an open source graph visualization resource provided by AT&T research. Later, we 

will use this package by enabling the HAVE_DOT function in our configuration file to 

allow Graphviz to generate our graphs. This results in a more visually appealing and 

professional result. Finally, in order to convert documentation into a PDF, install LaTex 

(for a Windows user, I highly recommend the use of MikTex) and Ghost Script. Together, 

these two packages will allow for PDF generation.

�Documentation Project Setup
There are so many ways to set up a directory structure for a project. Earlier, I discussed 

how I like to organize a project based on the layer of firmware, such as drivers, 

middleware, and application. Since each of these layers could be moved from one 

application to the next, I find that it makes more sense to add a documents folder to each 

of the different layers of firmware. Depending on how you organize your software, it may 

even make sense to have a documents folder for each of the components in a project so 

that the documentation can follow that component. In any case, a documentation folder 

will need to have the following:

•	 An images folder to store any visual aids that will be included in the 

documentation

•	 An output directory for HTML-, PDF-, and RTF-generated 

documentation

•	 A configuration folder to hold the Doxygen configuration file

•	 A folder for additional documents, such as requirements, design, 

main pages, datasheets, schematics, etc.

I am a big fan of only inventing the wheel once, so as soon as a directory structure 

that works for you is determined, copy that folder structure (even any file starters) and 

save it somewhere safe for the start of each project.
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One of the advantages of using Windows is that the old humdrum of command 

prompts and command options are a thing of the past (fine, I admit I still use the 

command prompt for things like ipconfig or Python scripts, but I can pretend like the 

old terminal days are over). Doxygen for Windows comes with a user interface called 

DoxyWizard that can be used to set up a Doxygen configuration file. The configuration 

file should be stored in the config folder of the documentation folder that was just 

discussed.

DoxyWizard is broken up into a tabbed user interface where each tab acts as a 

stepping stone for setting up the project, as can be seen in Figure 5-2. First, we have a 

Wizard tab that is extremely useful for configuring the initial project settings, such as 

project name, logo, source location, and where to store the documentation. Next, with 

the basics entered, the Expert tab allows the fine-tuning of Doxygen for parameters such 

as file extensions, messages, HTML, and many other options. Finally, the Run tab is 

where a developer can execute Doxygen based on the configuration-file parameters and 

build the documentation.

Figure 5-2.  DoxyWizard project setup

Chapter 5  Documenting Firmware with Doxygen



129

Using the Doxygen Wizard tab is straightforward. Under Project, enter the project 

name, a brief description, and the version or ID for the software. If the project has a 

logo, the logo file can be selected, and the logo will appear on the top of each HTML 

documentation page in the HTML header. I usually just place my company logo, since 

each individual project does not have its own logo associated with it. The primary 

directory for source code and the destination for the documentation can also be entered. 

An example of the Setup page can be found in Figure 5-2.

The Mode menu provides a developer with the ability to select the programming 

language that is being used. An estimated 80 percent of all embedded software is 

developed in C, which makes the selection of optimizing for C a good guess. Obviously, 

if a developer is using C++ then the option for C++ optimization should be selected. 

Figure 5-3 shows an example of how the Mode page should look when properly 

configured. Note that Doxygen in this case is set to only generate documentation for 

documented entities. Documented entities are areas of code that have special comment 

blocks associated with them. For a code base without any comments, a developer could 

select “All Entities,” and Doxygen would still parse the code and generate at least some 

documentation.

Figure 5-3.  DoxyWizard Mode setup
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The Output option provides a developer with the ability to select the types of 

generated documentation that should be created. Figure 5-4 reveals that the options are 

HTML, LaTeX, Man pages, RTF, and XML. But what about PDF? I’ve found that the best 

way to generate a PDF is to either use the LaTeX output or, better yet, to open the RTF 

and save it as a PDF. Sometimes it can be useful to add additional information to one of 

the generated files prior to creating the PDF and releasing it. The RTF also has the option 

of using a template so that the generated document fits a required format. Creating an 

RTF template is beyond the scope of this book, but be aware that templates exist if it is an 

area of interest.

Figure 5-4.  DoxyWizard Output setup

No documentation is complete without some sort of diagram, and Doxygen has the 

ability to generate a plethora of diagrams automatically for developers. The diagrams do 

require GraphViz and the dot tool, so at any point, if graphs in the documentation show 

up empty, odds are that Doxygen needs to be repointed to the GraphViz directory.

Developers can select which graphs to include within the documentation. Figure 5-5 

shows the Diagrams option, which includes all of the possibilities. A few examples include 

class diagrams, call graphs, and dependency graphs. These are good options to include 

within automated documentation.
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At this point, Doxygen has enough configuration information to generate the 

documentation. The documentation is generated by simply moving to the Run tab 

and pressing the Run Doxygen button. Doxygen will chew on the configuration file 

for a little while and begin processing the source. When “*** Doxygen has finished” is 

displayed in the status window, pushing the Show HTML Output button will open the 

HTML document that was just generated. Any documentation that is generated from 

the source would be created from the functions and variables within the code and not 

from developer-generated comments. Let’s examine how developers can document and 

customize their software for Doxygen.

�Doxygen Comment Fundamentals
When it parses the source files, Doxygen looks for a specific set of characters that 

indicates the comment is written for Doxygen. The language selected will determine 

which character set is used, but for developers programming in C, we can use our 

standard comment blocks of /* Comment */ with a slight twist. Doxygen comments start 

by adding a second * character to the comment block. For example, Figure 5-6 shows 

how a macro or variable would be commented for Doxygen.

Figure 5-5.  DoxyWizard Diagrams setup
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When Doxygen parses the source file, it would discover the /** comment block and 

then associate the entire comment with the macro GRAVITY_ACC_MS. All Doxygen blocks 

start with /**, but not every C construct is commented in exactly the same way. Let’s 

examine some of the common declarations and how a comment block can be formatted 

appropriately.

�Documenting enum and struct
Documenting an enumeration, typedef, or structure is not much more complicated 

than a basic macro or variable, but it does have a few caveats. First, a developer must 

add the basic comment block above their code to provide a description for the code, 

such as what it is for and how to use it. Next, a developer can add a comment for every 

member of an enumeration or structure. Documenting the member is done by placing 

a comment block to the right of the member and adding the < character after the /** so 

that the comment becomes /**<.

The < character is used to tell Doxygen that the comment is associated with the 

member that was declared to the left of the comment block. If you really want, you can 

explicitly specify the difference between an enumeration and structure by placing an 

enum or struct command in front of the definition, but Doxygen does such a great job 

of knowing what it is documenting that it is unnecessary and not recommended. An 

example code snippet for documenting a structure can be found here:

/**

* Defines two variables which specify the spacecraft structure.

*/

typedef struct

{

    uint8 Acceleration;   /**<Rate spacecraft is accelerating */

    uint8 Mass;                 /**< The current mass of the spacecraft */

}SpaceCraft_t;

Figure 5-6.  Basic Doxygen comment
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The most complicated code blocks to document are functions because they tend to 

require more information in order to be completely explicit on their purpose and how 

to use them. They have input and return parameters in addition to references to other 

functions, and even sometimes example code snippets. That is why it is extremely useful 

to create a function template that can be copied, pasted, and modified for each new 

function that is developed. Just be warned: copying and pasting a template can result in 

the documentation not being up to date if a developer forgets to update the pasted code.

�Documenting Functions
When documenting a function, there are several important factors that a developer 

needs to ensure are documented to get maximum benefit. The factors include the 

following:

•	 Function name

•	 Function description; that is, what it does

•	 A list of pre-conditions that should be completed before calling the 

function

•	 A list of post-conditions that a developer can expect to occur if the 

pre-conditions have been met before calling the function

•	 Descriptions of the function’s parameter list and whether the 

parameter is used to input and/or output data

•	 A description of the function return data, if there is any

•	 An example code snippet on how to properly use the function

•	 A list of related functions that would be relevant for a developer to be 

aware of

•	 A change history documenting all the changes that have been made 

to the function with the date, version number, developer who made 

the changes, and a description of the change that has been made

The preceding list might at first seem overwhelming. There is a lot of information 

that needs to be included. But consider what would happen if any of this information 

were omitted. Take, for example, omitting whether the parameters are inputs or outputs 

to the function. A developer looking at the function will need to take extra time to 
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determine what the parameters are doing, and might even need to experiment to get it 

right. Or worse, they could just implement what they think is right and hope for the best. 

Hello, new bug! Such a simple piece of documentation will make it very clear what the 

parameters are doing. Remember, sometimes the code isn’t readily available  

(in binary format), which means the documentation and the function prototype are the 

only information a developer has to go on.

A developer looking to properly document their function will need to create a 

function comment block that contains all this information. The first step is to provide 

the function name in the comment block. Documenting all the features in the preceding 

list will take up quite a few lines of code, and since the comment block should be above 

the function definition, we want to make sure that we can easily find the function name, 

which will follow dozens of lines later. The comment block will start with the text shown 

in Listing 5-1.

Listing 5-1.  Function Start Block

/******************************************************************

* Function : Dio_Init()

*//**

In the preceding case, we don’t want the function name to be included multiple 

times in a row within the generated documentation, so we leave the function name 

outside the Doxygen comment block. The comment block doesn’t start until the /** 

sequence. Doxygen will automatically associate this comment block with the function 

that immediately follows it and associate the comment block with the function name. 

Including the function name in the Doxygen block would duplicate the function name in 

the documentation, which would make the resulting documentation confusing.

The next step is to provide a brief description of the function’s purpose. Since the 

Doxygen comment block has already been started, we can simply start entering the text 

that we want for the description. An example for the description block can be seen in 

Listing 5-2. In this case, we want to create a heading within the comment block with 

the text “Description” in bold face. We can do this by placing \b before the text. The 

remainder of the comment should simply state the purpose of the function.
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Listing 5-2.  Function Description Block

* \b Description:

*

* This function is used to initialize the Dio based on the 

* configuration table defined in dio_cfg module.

Next, a developer should take the time to carefully think through any of the function 

pre-conditions that need to be documented. For example, before making a call to a 

peripheral transmit function, an application should have already called the peripheral 

initialization function and configured the peripheral clocks. Documenting the  

pre-conditions is essentially a checklist for developers on what they need to make sure 

happens before ever using the function. An example of a pre-condition/post-condition 

block can be seen in Listing 5-3.

Listing 5-3.  Pre-condition/Post-condition Comment Block

* PRE-CONDITION: Configuration table populated (sizeof > 0) 

* PRE-CONDITION: NUMBER_OF_CHANNELS_PER_PORT > 0 <br>

* PRE-CONDITION: NUMBER_OF_PORTS > 0 <br>

* PRE-CONDITION: The MCU clocks configured and enabled.

* POST-CONDITION: The DIO peripheral is initialized.

The function parameter list and return data should be the next information listed 

inside the comment block. In order to document parameters in Doxygen, a developer 

should use the specialized Doxygen tag @param. Doxygen has several specialized tags 

that provide the tool with information on how to process the comment block. Refer to 

the latest documentation for a complete tag list. For parameters, @param can be used by 

itself, but it is recommended that developers follow the tag with square brackets [], then 

specify the parameter direction, such as an input [in], output [out], or both [in/out]. 

An example can be seen in Listing 5-4. The return parameter for the function is specified 

by using the @return tag followed by the type of data being returned and a description.

Listing 5-4.  Function Parameter and Return Block

* @param [in]         Config is a pointer to the configuration table

*                     for the peripheral.

*

* @return             void
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Developers should include at least a short example of how the function can be used. 

There is a mechanism within Doxygen that allows a developer to insert code snippets 

into the documentation. In order to show code within the documentation, two special 

tags are required, the @code and @endcode tags. As one might guess, the @code tag is used 

to tell Doxygen that the following comment block contains code, while @endcode tells 

Doxygen that the code block is complete. The code example can be inserted in between 

the tags. Doxygen will parse the code and generate a special documentation block that 

shows the code. An example of how to use the tags can be seen in Listing 5-5.

Listing 5-5.  Function Example Code Block

* \b Example:

* @code

* const DioConfig_t *DioConfig = Dio_ConfigGet();

*

* Dio_Init(DioConfig);

* @endcode

The next critical puzzle piece is to tell Doxgyen what other functions are related to 

this function so that links to those functions can be generated in the documentation. 

The code-block format is to use the @see tag followed by the name of the function. If 

the function exists within the documentation, Doxygen will create a hyperlink in the 

HTML documentation that allows a developer to easily navigate to related functions to 

understand how they work. Listing 5-6 shows how to use the @see tag.

Listing 5-6.  Functions Related Block

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

Finally, our function block could contain a change history for the function. A change 

history isn’t necessarily required, but in safety-critical systems developers may want 

to note at the function level the changes that were made and when they were made. 

Change information could be kept in a general log or at the beginning of a module, but it 

is up to the developer to decide how they want to track changes.
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The change-history block is going to look a bit crazy at first because there is HTML 

formatting included so that the change list looks presentable in the final documentation. 

Without the HTML tags, the generated documentation would not align or look nice, 

which would undoubtedly drive management crazy. A developer can insert HTML tags 

into the documentation, such as <br> for a line break and <b> to start bold-faced text  

and </b> to end bold-faced text. In the generated documentation, a change history  

looks most presentable when using a table that has an 800-pixel width. An example 

change-history block can be seen in Figure 5-7.

Figure 5-7.  Function Revision Log

Each documentation block that we have discussed can be pulled together into a 

single block that results in a nice, legible, and reusable function template that can be 

used to quickly generate adequate function documentation with minimal effort and  

time input. A template that is fully assembled and ready to be used can be found at  

www.beningo.com.

�Documenting Modules
Application code is going to contain a series of header and source modules that contain 

code comments. To generate the most consistent documentation possible, there are two 

additional pieces of information that developers need to add to their modules to ensure 

full documentation. The first is a module header. The header is something that nearly 

every developer already adds to their code, except in this case they are replacing general 

text with specialized Doxygen tags. Typical information that is included in a module 

header is the following:

•	 Module name

•	 Filename

•	 File description

•	 Module author
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•	 Original file date

•	 Module version

•	 Compiler used

•	 Target

•	 Any specialized notes

•	 Copyright

•	 Licensing information

Listing 5-7 demonstrates what a typical module header would look like. Notice that 

the information that we would normally put in the module header simply gets an @ 

symbol added before it so that Doxygen can place the information in the documentation. 

A module header of this type would go into both header files (*.h) and source files (*.c).

Listing 5-7.  Example Module Header2

/******************************************************************

* @Title          :   Digital Input / Output (DIO)

* @Filename       :   dio.c

* @Author         :   Jacob W. Beningo

* @Origin Date    :   09/01/2015

* @Version        :   1.0.0

* @Compiler       :   TBD

* @Target         :   TBD

* @Notes          :   None

*

* THIS SOFTWARE IS PROVIDED BY BENINGO EMBEDDED GROUP 

* "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,

* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BENINGO 

* EMBEDDED GROUP OR ITS CONTRIBUTORS BE LIABLE FOR ANY

* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 

2�Legal wording is modified from Freescale source example code and provided as an example.
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* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 

* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 

* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 

* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF

* THE POSSIBILITY OF SUCH DAMAGE.

******************************************************************/

At this point, a developer might think that is all they need to know about Doxygen 

to start, but there is still one more interesting feature that can be used to organize 

the resulting documentation. Doxygen contains an @addtogroup tag that allows the 

documentation to be organized by group. For example, a developer may be developing a 

hardware abstraction layer and wants all the modules contained within it to be shown in 

the documentation together under the group HAL. In this case, the developer would add 

the @addtogroup tag near the beginning of the module along with a curly bracket { (I like 

to call them squirrelly brackets). At the bottom of the module, a developer would then 

add one final closing squirrelly bracket. Don’t forget that the squirrelly brackets must be 

within a comment block, otherwise the compiler will try to process them. An example of 

adding the contents of dio.c into a HAL group can be seen in Listing 5-8.

Listing 5-8.  @Addtogroup Comment Block

/** @addtogroup MCU_Drivers 

 *  @{

 */

Code goes here

/** @}*/

�Creating a Reusable Template
For the most part, no developer is going to be able to remember from memory all the 

details thast are required to fully document a module and its contents. Remember, 

consistency and readability are important characteristics for software that will be 
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ported and reused, so there must be some way to decrease the labor intensity required 

to document source code. The easiest way to document code is to create a header and 

source file template that contains generic starter information and formatting so that 

every time a new module is created, the template is used and contains all the Doxygen 

formatting and tags. The template will provide a consistent look for every module within 

the code base.

Figuring out all the little nuances Doxygen requires can take some time and some 

trial and error. I’ve been using Doxygen for almost a decade (if not longer), and I still 

periodically make adjustments and tweaks to my template. A developer could start from 

scratch with a blank header and source module, or they could download the templates 

that accompany this book and modify those templates for their own use. The resources 

at the end of this chapter identify where the templates can be downloaded.

Once the template has been downloaded, a developer should review each 

documentation section. First, review how each tag is used and the way each C language 

construct is documented. If the documentation does not make sense, navigate to the 

Doxygen website and review the user-manual entries on that tag. Run Doxygen and 

review what the generated HTML documentation looks like. At this point, a developer 

can start to make modifications to the template and then rapidly observe how the 

changes affect the final output.

�Generating a Main Page
The fact that an application can be documented in such a way that a software manual 

is automatically generated is very powerful. After experimenting with Doxygen’s output 

capabilities, a developer might eventually notice that the main HTML page is rather 

plain. In fact, the main page is completely blank and devoid of any useful information. 

As unfortunate as this may be, it is a wonderful opportunity for developers to create their 

own main page.

The main page should contain information about the project and code base that 

would be useful for anyone who is trying to get up to speed or who is developing 

application code. In fact, a main page would be very useful if it contained a table of 
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contents with a series of web links that could be used to navigate to pages with important 

developer information. Examples for main page information include the following:

•	 Project introduction (what is this whole thing about?)

•	 Version log (which version is this and how have things changed from 

version to version?)

•	 Acronyms (what do all these funny terms mean? i.e., ADT, A2D, SPI, 

CAN, PWM, etc.)

•	 Software architecture overview

•	 APIs (Do we have any APIs that need to be explained?)

•	 HALs

•	 Middleware

•	 OS information

•	 Coding standards (what are our code conventions? How do we name 

things, etc.?)

•	 Documentation (how we documented things)

•	 Project requirements (a quick overview of what we had to do)

•	 Testing and validation (how did we prove that this version actually 

works?)

•	 Tools (tools that we used to develop the project, such as compiler, 

IDE, lint, svn, etc.)

Anything that a developer needs to know should be included as part of the main 

page. Creating the main page starts out relatively simple. There are two primary methods 

that can be used to populate the main page. First, a single file can be used in which the 

entire table of contents is added. For small projects, a single file can make a lot of sense 

since there probably isn’t a lot of information that needs to be recorded. However, as 

projects grow, a single main page file can become rather large and difficult to maintain. 

A better approach would be to create a file for every element of the table of contents 

and then have Doxygen merge them into a main page. For now, we will only examine 

the first method, and the reader can at their own leisure investigate the more advanced 

technique.
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Doxygen recognizes a file to be the main page by identifying the @mainpage tag at the 

top of the file. After the @mainpage tag has been added to the file, a developer needs to use 

HTML tags to create the layout and the information flow for their page. Being an expert at 

HTML is not required. There are a few HTML commands that a developer will find useful, 

which can be found in Figure 5-8. The easiest way to create links for the table is to use 

the HTML anchor tag. When a link is clicked that has an associated anchor, the page will 

jump to the anchor point, allowing the main page documentation to be easily navigated.

Figure 5-8.  HTML commands

Each entry in the table of contents section of the main page can be considered its 

own separate section. Doxygen has a built-in section command that can be used to 

separate the content. Doxygen even provides a subsection command for the event that 

we need to break up our information into even smaller pieces. Sections will allow a 

developer to organize their main page and properly control the flow of information.

As with any document, a picture is worth a thousand words, and Doxygen even has a tag 

to include them. The image tag consists of the command image, a type such as html, rtf, or 

latex, and then the filename, such as image.jpg. Due to the way Doxygen handles images, a 

developer does need to include multiple image tags if more than one type of documentation 

is going to be created. For example, if a developer wants to create HTML, RTF, and LaTex 

files, an image tag needs to be added that includes the command for all three formats.

�Ten Tips for Commenting C Code3

During the hustle and bustle of the development cycle, it isn’t uncommon for 

commenting the code to fall to the bottom of the priority list. With the pressure to 

get the product out the door, discipline usually fails, and short cuts result in a poorly 

3�“10 Tips for Documenting C Code,” originally published on EDN.com: http://www.edn.com/
electronics-blogs/embedded-basics/4422388/10-Tricks-for-Documenting-Embedded-Software
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commented code base. Source code that is well documented can decrease the cost and 

time to market by providing insights into the software that would otherwise require 

time and experimentation to jog the developers’ memory on the what and why of the 

code’s behavior. These insights, if lost, can increase costs and delay time to market by 

introducing bugs into the code base. Here are ten simple tips that can be followed to help 

ensure that not only does the software get documented but also that it is documented 

with useful information.

�Tip #1: Explain the Why, Not the How
There seems to be a human tendency when developing software to want to explain 

what a line of code is doing rather than why the code is there in the first place. A favorite 

example is bit shifting a literal by x bits. The code and the comment generally look 

something like this:

// Shift bit by 8 and store in PortB

*Gpio_PortB |= (1UL<<8);

The comment itself leaves quite a bit to be desired. Anyone with a basic 

understanding of the C language knows by observation what the line of code is doing, 

but why are we shifting by 8? Why are we storing the shifted bit pattern in PortB?  

A developer who reads this line of code six months or a year after writing it will have 

little idea without investigation as to what this line is really doing. Something more 

appropriate might look something like the following:

// Port B bit 8 controls the motor relay that needs to be turned off 

// during the emergency stop procedure. Setting bit 8 high will 

// disengage the motor through a relay.

*Gpio_PortB |= (1UL<<8); 

This comment may not be perfect, but it explains why the developer is shifting a 

bitwise ORing into PortB.

�Tip #2: Comment Before Coding
The general wisdom of commenting code has always suggested that comments be 

written when the code is. This insight makes a lot of sense, because while the software 

is being written the why of it is fresh in the mind of the developer. The developer could 
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wait until after the software is written, but the pressure of getting to market and other 

priorities often make it highly unlikely that the comments will convey the original intent.

An alternative to writing comments during or after the code is to instead write the 

comments before the software is written. This has the unique advantage of allowing the 

developer to think through what they are about to code and the why before ever writing 

a single line of code. It can be thought of as a translation of the software architecture and 

design phase of development into source code. This keeps the software design at the 

forefront of the developers’ minds and allows them to think clearly about what it is they 

are about to write code for.

�Tip #3: Use Doxygen Tags
There are many different free tools available on the web that can translate code 

comments into useful document formats. A tool that can scan the source and generate 

HTML, RTF, and/or PDF files should be a developer’s dream. Why? Many development 

teams are forced to maintain not only their source code but also a wide variety of design 

documents that describe what the code is doing. These documents often trail what is 

happening in the program. Using a tool such as Doxygen can automatically translate the 

code comments into a document that fits the bill of these design documents! The result 

is that the developer now only has a single source and documentation chain to maintain, 

which should decrease the amount of time they need to spend creating “pretty” 

documents. (Also, hopefully this also ensures that the documentation and source code 

stay in synchronization with each other).

Doxygen has become widely accepted to the point that compiler and silicon vendors 

include Doxygen tags in their automatically generated code. They are building Doxygen 

into the tool chains in order to make it easier for developers to generate documentation. 

As developers, shouldn’t we accept this free tool that makes documentation so much 

easier?

�Tip #4: Adopt a Code Style Guide
A coding style guide contains all the information a developer would need to properly 

create identifiers and also how the software should be documented. A style guide helps 

the developer or a team of developers develop software in a uniform manner. A style 

guide aids the developer by removing distractions from the software that may exist due 
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to stylistic differences, the result being that code reviews are easier because the code 

style is uniform and the actual code can be the focus rather than superficial details about 

comment locations.

�Tip #5: Use a File Header
Using a version-control system is a highly recommended practice, but it can become 

tedious to always refer to the revision-control system regarding the changes that occur 

in a code base. It can sometimes be confusing or unclear what a module’s purpose is. 

Using these reasons as a basis, it is recommended that header and source files contain a 

comment header describing the function and purpose of the module. There are several 

pieces of information that could be included in the header, but at a minimum it should 

include the following:

•	 File name

•	 Author

•	 Origin date

•	 Module version number

•	 Compiler version used to compile the code

•	 The intended target

•	 Copyright information

•	 Miscellaneous notes

•	 Revision information

�Tip #6: Create a Commenting Template
One of the best methods for ensuring that code comments are consistent and that they 

adhere to the Doxygen syntax is to create a commenting template. There would be a 

need for two templates—one for header files and then another for source files. The 

coding templates would contain all the standard commenting blocks required to adhere 

to the coding style.

A commenting template would include a file header along with comment tags and 

commenting blocks for structures, enumerations, typedefs, and functions. An example 
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header and source file template that can be used to develop embedded software and that 

uses Doxygen tags can be found at http://www.beningo.com/162-code-templates/.

�Tip #7: Have a Consistent Comment Location
One of the most effective ways to decrease bugs and the costs associated with a software 

project is to perform code reviews. A developer and his peers usually perform the 

code review, but the process can become more difficult if the commenting structure is 

inconsistent. Placing comments that use different formats and putting them in different 

places can be distracting and detract from the code review, decreasing its effectiveness.

The use of a coding style guideline is recommended, as in the previous tip, because 

it would dictate not only the commenting formats that should be used but also where 

comments should appear. This will help keep the commenting structure uniform and 

allow code reviewers to focus on the code and its behavior rather than be distracted by 

the location or information contained within the comments.

�Tip #8: Don’t Comment Every Line
In all truth, developers really don’t want to comment their software. It is time consuming 

and not enjoyable. It is much more fun to twiddle bits, control hardware, and pretty 

much do anything else (other than sit in a meeting, of course). Yet, what is often 

considered well-documented code has a comment for every single line of code.

The whole purpose of commenting code is to provide the future version of the 

developer or maintainer with insight as to the what and why of the software. A verbose 

essay is not required or wanted. Creating a block of comments that describe what the 

block is doing is usually completely adequate. One great advantage of commenting the 

block is that if the code needs to change but the block description still applies it can save 

development time that would otherwise be spent updating comments.

�Tip #9: Start Mathematical Type Identifiers with the Type
When developing software that is performing a mathematical operation, it can be 

extremely useful to start the identifier with the type. For example, creating a variable 

named ui8_Velocity or si32Acceleration provides a developer with an instant 

understanding of the type.
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Starting an identifier in this way has many advantages. First, there is no need to 

reference the variable declaration to get the type. This can save time otherwise spent 

continually having to refresh on the type and size of the variable and whether it needs 

to be cast in the calculation. Second, it makes it easier to spot casting errors, such as 

multiplying two 8-bit numbers without a cast.

Starting an identifier with the type is a trend that seems to come and go over time. 

Personally, the author has bounced back and forth on this naming convention, but it 

seems to prove very useful for identifiers used in mathematical calculations and can 

make mathematical errors much more obvious.

�Tip #10: Update Comments with Code Updates
Using a template in conjunction with Doxygen can be a very powerful tool if utilized 

properly. Part of what is considered proper use of such templates and tools comes during 

software updates and maintenance. These tools are only effective if the developer is 

disciplined enough to update their comments as their software changes.

During the development process, requirements, design, and implementations 

change. As part of these changes, the developer needs to make sure that the comments 

are always up to date with the software that is implemented. Even if it doesn’t feel like 

there is enough time to implement the code changes and update the comments, the 

developer should still take the time to do so. One reason is that over the lifetime of the 

product the cost will be greatly influenced by the developer’s maintaining discipline 

despite the time pressures that may have been placed on them.

�A Few Final Thoughts on Documentation
Commenting software is often delegated to being one of the lowest-priority tasks in the 

development cycle. The pressure to quickly implement and deploy embedded software 

leaves the engineer scrambling to design, implement, and deploy their firmware. The 

reality is that commenting code and providing clarity on the why can make future 

maintenance efforts and even the original development effort cost less, and under the 

right circumstances it can even decrease the time to market.

These tips are just a few simple examples of what can be done to improve the 

embedded-software design cycle through easing the demands that are placed on the 

developer by using templates, standards, automated tools, and taking the time to explain 

the why of the software.
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�Going Further
Reading about automatic documentation generation is one thing, but actually doing 

it is a completely different story. The following are some suggestions on next steps to 

improve the way your software is documented:

•	 Review the software documentation spectrum located in Figure 5-1. 

Where do you/your team currently lie within the figure?

•	 Identify three improvements that can be started over the next three 

months that can take your documentation effort from its current 

place on the spectrum toward where you want to be.

•	 Add a calendar reminder to review the progress being made in 

improving the documentation process monthly.

•	 Read “10 Tricks for Documenting Embedded Software” on Jacob’s 

blog at EDN.com.

•	 Download and install Doxygen.

•	 Download Jacob’s Doxygen templates from www.beningo.com.

•	 Review each template and become familiar with the different tags used.

•	 Select a module from an existing source project and convert it to use 

the Doxygen template. Generate the documentation and examine the 

resulting output.

•	 Update the template and main page for your own purposes and needs.

•	 Separate the main page file into separate files for each of the 

table of contents items. Separating the files will make them more 

maintainable and modular.

•	 Add the formatting and style of the Doxygen comment blocks to your 

own C style guide.

•	 Generate output documentation for HTML, PDF, RTF, and LaTeX. Get 

familiar with potential issues and workarounds that may be required 

to get the look and feel needed for each documentation set.

•	 Experiment with the advanced tabs within the DoxyWizard and learn 

what each feature does and how it affects the generated output.
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CHAPTER 6

The Hardware Abstraction 
Layer Design Process

“Design is the fundamental soul of a man-made creation that ends up 
expressing itself in successive outer layers of the product or service.”

—Steve Jobs

�Why Use a HAL?
Using a HAL is a great way to develop software that can be easily reused and ported from 

one application and platform to the next. Why would a developer want to do such a 

thing? For starters, reinventing the wheel over and over again gets pretty boring. I believe 

most developers want to be working on cutting-edge development work instead of being 

stuck in a never-ending Groundhog Day1 loop. Even for developers who prefer to do the 

same thing over and over and over again, development timelines are short, budgets are 

tight, and there is just way too much work that needs to be done on any given project. 

The goal is therefore to write code that can be reused, and in order to do that, developers 

need to create a hardware abstraction layer (HAL) to allow their middleware and 

application code to access the microcontroller hardware generically.

Creating a rock-solid HAL does not happen overnight. The HAL creation process is 

an iterative one and very well might take years. The good news is that developers can 

create a HAL very quickly and then with each project adjust and modify it until nearly 

every conceivable permutation has been encountered. We are going to walk through 

1�Groundhog Day, the 1993 comedy starring Bill Murray. If you don’t understand this reference 
then stop now, go on Netflix, Hulu, etc., and watch the movie. An all-time classic.
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the HAL creation process, but before we do, let’s take a look at the characteristics that 

every HAL needs to have. Keep in mind that this book examines a HAL that jumpstarts 

a developer’s HAL needs. Rather than taking years to tweak, the readers of this book will 

be able develop a HAL very quickly based on the processes and accompanying materials.

�A Good HAL’s Characteristics
So far in this book, we’ve discussed several characteristics that portable and reusable 

software should exhibit. A well-designed and thought-out HAL will exhibit these 

properties, but there are a few characteristics that should be highlighted at this point. 

We are about to design a hardware abstraction layer—not the code that runs behind 

the interface, but the actual interface itself. A good HAL will contain the following 

characteristics:

•	 Human readable

•	 Abstracted complexities

•	 Well documented

•	 Portable

•	 Generic control capability

•	 Extensible, specific control capability

•	 Encapsulates data

•	 Reusable

•	 Maintainable

The hardware abstraction layer should contain a basic set of functions to control 

the underlying peripherals that are human readable and generic. The interface should 

be simple and contain fewer than a dozen functions. The more complex the interface 

becomes, the more difficult the interface will be to understand, port, and just simply use. 

Developers should only expose the need-to-know information of the interface and allow 

all the details to be hidden behind the interface. Developers who use the HAL don’t need 

to be an expert in the underlying hardware and complexities, just an expert in how to use 

the interface!
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CASE STUDY—WHEN GOOD INTENTIONS BACKFIRE 

A well-designed and -executed HAL should simplify application development along with many 

other value-added benefits, such as faster development and decreased costs. However, when 

the HAL interface is designed, developers need to make sure that they provide verbose error 

codes and documentation that specifies what causes those errors. On numerous occasions, 

I’ve encountered vendor code that has all the dressings and appearance of being great only 

to discover later that when an issue occurred behind the interface, it was nearly impossible to 

troubleshoot and figure out what was wrong. When this happens, debugging the black box can 

be challenging and time consuming. Test and validate any vendor code before committing to it!

�The HAL Design Process
Designing a hardware abstraction layer is a relatively straightforward process that is 

repeated for each microcontroller peripheral, potentially multiple times for different 

architectures. The general process contains seven steps:

	 1)	 Review the microcontroller peripheral datasheet.

	 2)	 Identify peripheral features.

	 3)	 Design and create the interface.

	 4)	 Create stubs and documentation templates.

	 5)	 Implement for target processor(s).

	 6)	 Test.

	 7)	 Repeat for each peripheral.

The process, while apparently simple, can require a few executions before becoming 

completely clear. In this chapter, we will walk through this generic process for designing 

a hardware abstraction layer, and then in subsequent chapters we will walk through the 

process again for specific peripherals and external components.
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�Step #1: Review the Microcontroller Peripheral 
Datasheet
In order to create a HAL that can be used from one application to the next, a developer 

must understand the microcontroller peripheral’s capabilities. The only way to do this 

is to review the microcontroller datasheet for the peripheral. In fact, the best way to 

do this is to review datasheets from multiple microcontroller vendors and perform a 

comparison. Start by identifying microcontroller architectures that are pertinent to your 

particular applications. For example, select a couple of 16-bit microcontrollers from 

two or more suppliers and then a couple of 32-bit microcontrollers from two or more 

suppliers.

The first review of the datasheets should be high level. Review the descriptions and 

jot down notes on basic features, but don’t dig into the details at this point. Collecting 

the datasheets and understanding the general use and purpose of each peripheral is 

more important at this stage.

�Step #2: Identify Peripheral Features
Once the general behavior and use of a peripheral are understood, a developer needs 

to determine which features are common and which are uncommon to a particular 

microcontroller. Creating a feature matrix is a great way to identify these capabilities. 

Table 6-1 is an example of a feature matrix. The microcontrollers to compare are listed 

along the top, with the identified features in the rows of the first column. Start by creating 

the matrix and leaving the feature list blank. A developer will discover these as they read 

through the datasheets in detail. As features are added to the list, place a checkmark in 

each column if the microcontroller peripheral supports the feature.

Table 6-1.  Peripheral Feature Comparison List

Peripheral Features MCU #1 MCU #2 MCU #3 MCU #4 MCU #5

Feature #1 x x x x x

Feature #2 x x x x x

Feature #3 x x x

…
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One of the best areas of the datasheet to review is the register map. The registers 

reveal what configuration settings are available for the peripheral. Reading the 

peripheral’s general description can be helpful, but the details are in the registers. 

For example, a developer creating a HAL for a GPIO device would find the ability to 

multiplex the pins, set pins as inputs or outputs, and control the output of the pins. The 

general description may not mention these since they appear obvious to a seasoned 

developer. Reviewing the register map makes these capabilities obvious.

Once the feature matrix is completed, a developer should review the matrix and 

identify the features that are common to every microcontroller and which are attempts 

to differentiate the microcontroller. The common features, such as setting the pin 

multiplexer for a GPIO pin, will be added to the HAL interface, while non-common 

features such as input validation will be included through a generic interface. The 

common features will be the features that every single microcontroller vendor peripheral 

has, and those are the features to design the interface around.

�Step #3: Design and Create the Interface
By this point, a developer has identified all the common and uncommon features that 

are associated with a particular peripheral. The developer can now create the interface. 

There are three key areas that a developer must take into account when designing their 

interface:

•	 A common interface

•	 An uncommon interface

•	 Callback registration

The common interface is designed to handle common peripheral features. For 

example, the common interface usually consists of initialization and writing and reading 

from the peripheral at a minimum. We will look at detailed examples in the coming 

chapters, but for now, Figure 6-1 provides a generic idea of what a developer would 

expect the common interface to look like.
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The uncommon interfaces into the peripheral have the potential to clutter up the 

interface and make it unwieldy. In order to handle any custom features built into the 

peripheral, a very simple interface can be created that allows an application developer to 

have full control and access to the peripheral to set up and configure those features. By 

keeping the HAL interface generic, the application code can extend the HAL to include 

those custom features. As far as the HAL is concerned, the interface is nothing more than 

presenting a method for reading and writing hardware registers.

Take a moment to look at the generic definition listed in Figure 6-2. Notice that even 

though these two interfaces are designed for uncommon peripheral features, we’ve 

managed to create a generic and reusable interface. That is a huge plus. The downside 

is that if a developer wants to use these customized features they need to dig into the 

datasheet, learn how the extended features work and how to set them up, and then 

extend the interface into their application code. In most circumstances though, the 

common interfaces are what will be used, so the downside to this technique is actually 

quite minimal.

Figure 6-1.  Common-feature HAL interface example

Figure 6-2.  Uncommon feature HAL interface

The final piece to the HAL design puzzle is the callback registration interface. Every 

single peripheral has interrupts, and if we are designing a clean, reusable interface, the 

callback interface will provide developers with a clean way of customizing the interrupt 

needs without having to continually rewrite the driver when it is used in different 

applications. Interrupt service handlers can be written at the application level and then 

registered as callbacks with the specified interrupt through the callback interface.
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In my experience, many developers overlook the need to have callbacks as part of 

their interface. Instead, every application has a slightly different version of the driver that 

is dependent upon the application. The ability to port this code drastically decreases 

and often causes confusion and issues when trying to update the drivers. The interface 

example is fairly simple and can be seen in Figure 6-3.

Figure 6-3.  Callback HAL interface

Developers may be wondering, why is there only a register function and no way to 

unregister a callback? The best practice for using interrupt callbacks would be to assign 

callbacks during the system initialization. Once registered, there shouldn’t be any need 

to unregister or change the behavior of the system. If for some reason there is, simply 

register a new function with the driver. The new registration will override the old. If the 

developer wants nothing to be associated with the callback, simply register a default or 

exception handler.

�Step #4: Create Stubs and Documentation 
Templates
At this point in the HAL design process, developers understand what features need to be 

included in the interface. There are two key activities that must be performed now. First, 

a developer must create an outline for the interface that acts as a prototype or empty 

implementation from which all uses of the HAL will derive. Generally, these empty 

interfaces are known as stubs or sometimes are referred to as scaffolding. Second, since 

the stubs will serve as the interface, adding documentation to the stubs can be critical to 

minimizing future porting and implementation efforts.

Many developers at this point will start to develop the stubs for their peripheral.  

I think that is a grave mistake. We understand what features go into the interface, but there 

currently isn’t a guide as to what the stubs should look like or what they are supposed to 

do. Therefore, I highly recommend that developers start by documenting the work that 
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they are about to perform. There is a simple process that developers can follow to create 

their documentation, which can be found here:

	 1)	 Copy the Doxygen header and source templates developed  

in Chapter 5.

	 2)	 Rename the copied template to the peripheral interface being 

designed; for example, gpio, pwm, etc.

	 3)	 Update the file header information.

	 4)	 Fill in the interface documentation by creating a function 

documentation block for each of the features listed back  

in Step #3.

	 5)	 Repeat the preceding steps until all the features for the peripheral 

have been documented.

Once the documentation has been developed, filling in the stubs is trivial. The 

documentation literally serves as our design document, and we simply read the 

documentation and then implement what we read. For example, take a look at the 

function block found in Listing 6-1, which shows the initial documentation for the  

Pwm_Init interface. Notice that the developer has now had time to think through the 

interface and identify pre-conditions and post-conditions along with the data that needs 

to be passed into and out of the function. At this stage, a developer can fill in the stub.

Listing 6-1.  Documentation for pwm Initialization Interface

/**********************************************************************

* Function : Pwm_Init()

*//** 

* \b Description:

*

* This function is used to initialize the pwm based on the configuration 

table defined in pwm_cfg module.

*  

* PRE-CONDITION: Configuration table needs to populated (sizeof > 0) 

* PRE-CONDITION: The MCU clocks must be configured and enabled.

*
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* POST-CONDITION: The Pwm peripheral is set up with the configuration 

settings.

*

* @param[in]      Config is a pointer to the configuration table that 

contains the initialization for the peripheral.

*

* @return         void

**********************************************************************/

Filling in the stub is super easy. The function documentation is already completed, 

and all the developer needs to do is read the text and convert it into code. The developer 

can read through the documentation and simply execute these next steps:

	 1)	 Read the feature name; create a function with the same name.

	 2)	 Populate the parameter list based on the @param tags in the 

documentation.

	 3)	 Select appropriate types for the parameters if they have not been 

specified in the documentation (some interface data types may 

change based on the target architecture).

	 4)	 Populate the return data type.

	 5)	 For developers using C, populate the braces {} to create the 

function.

	 6)	 Copy the function implementation and add it to the header file for 

the prototype declaration.

	 7)	 Review the documentation and populate examples and the  

@see tags.

Before moving on to the implementation phase, developers should make sure that 

they save the completed template in their revision-control system. Developers will 

find that as they implement the HAL on multiple architectures and use it on different 

projects, the HAL may change slightly with time. This is perfectly normal but needs to 

be documented. A strict control process should be followed so that applications using 

different HAL versions don’t run into long-term maintenance issues.
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�Step #5: Implement for Target Processor(s)
With the stubs and templates in place, the development team is now ready to begin 

implementing their HAL; that is, filling in the implementation details for a particular 

architecture and target microcontroller. Developers must take care at this stage that 

they follow proper programming techniques, use version control, perform static code 

analysis, and so forth.

In order to get the most out of a first pass at the HAL, developers should implement 

the HAL on more than a single target. Back in Step #2, the developer sifted through the 

datasheets for several microcontrollers in the attempt to find common and uncommon 

peripheral features. Ordering development kits for these same microcontrollers and 

implementing the HAL on all three simultaneously is a great way to flesh out issues and 

ensure that the HAL is on the right track.

“Wait a minute,” you might say. “Implementing the HAL on three targets, perhaps 

only one of which will be used immediately, is wasted time and effort.” Not so! 

Remember the reusable driver patterns that were discussed in Chapter 4? Once a pattern 

is implemented in code, the developer simply needs to modify the pointer arrays and 

make a few minor updates to the initialization. The first development kit implementation 

will take a while, but the remaining two or three can all be implemented and tested in 

less than a couple of days. Remember, the HAL will become a major building block for 

developers in all future development projects. Spending a little bit more time up front to 

get it right will save money and time maintaining and updating code bases.

�Step #6: Test, Test, Test
A great advantage to having a well-defined hardware abstraction layer is that when 

porting or implementing on multiple processors it becomes possible to develop test 

cases that can be used for regression testing. Most of the developers that I encounter are 

horrible at testing. Don’t get me wrong, they spot check a few things here and there, but 

they really have no idea if the entire code base has actually been tested or not. They just 

cross their fingers and ship their code, which can be downright scary sometimes. When 

developing a HAL that will literally form the system’s foundation, testing is not optional.
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When testing a HAL, there are a few tips and tricks that developers should keep in 

mind to minimize the stress and pain. These include the following:

•	 Create a testing interface.

•	 Develop a formal set of test cases.

•	 Use regression testing.

•	 Automate the testing.

A single peripheral could potentially have thousands of possible initialization states. 

Verifying every single possible configuration value would be time consuming and nearly 

impossible if a developer were to not automate testing. Developing automated testing for 

a HAL takes some time, but the peace of mind and the quality of the software that comes 

from it is well worth it. In order to perform automated tests, a developer will need to do 

the following:

•	 Create a test interface into each of the peripherals.

•	 Develop an external testing application.

•	 Set up a test communication protocol to drive testing.

•	 Use an external application that runs the peripheral through its 

possible initializations and behaviors.

Figure 6-4 shows an example setup for testing a HAL. A developer could use a code 

test harness, but to really test an embedded system the tests should be run on live 

hardware. Figure 6-4 shows the use of an external test bench that stimulates the HAL and 

peripheral to perform its different functions. Developers can make testing as simple or as 

complicated as is needed. A very robust check of the implementation would transmit the 

different possible configuration tables to the HAL and then verify that all registers are set 

up as expected.
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Testing can be a very time-consuming process, especially in the early stages of the 

HAL design. Keep in mind that once the tests and the interface are created, they are 

designed once and used forever. The investment in most cases is well worth it, especially 

when one considers the typical cost to resolve a software bug.

�Step #7: Repeat for the Next Peripheral
Once a developer has successfully walked through these steps for a single peripheral, 

they are ready to repeat them and develop a HAL for every peripheral and device that 

will be used in their projects. Some development teams find it useful to dedicate an 

engineer or two for creating HALs for every possible device up front. Others simply 

create new HALs as the project requires. There is no right or wrong way to go about 

doing this.

In my own development efforts, I typically design a new HAL as the need arises. 

Once designed though, I can reuse the HAL from one project to the next with little to no 

effort. Application code becomes easily reusable because the interface doesn’t change!  

I use configuration tables to initialize the peripherals, and once the common features are 

identified, the initialization structure doesn’t change. A typical peripheral driver using 

the HAL interface takes less than a day to implement in most circumstances.

So, if this is your first time reaching Step #7, congratulations! I look forward to seeing 

you here again shortly. As you repeat the process over and over again, you may discover 

that you feel like Bill Murray’s character in Groundhog Day. Don’t worry! Eventually 

you will move on to bigger and better things and have a well-developed, robust HAL on 

which to build all your cool application code.

Test PC

Programmer

Target MCU
Bus Monitor /

Communications 

Logic Analyzer
I/O Monitor

Figure 6-4.  HAL test setup
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�10 Tips for Designing a HAL2

Now that we have examined the seven major steps required to develop a HAL, let’s 

discuss ten tips that are critical to this process. These tips may not all be new to the 

reader since we have already discussed a few in this book. Repetition is sometimes the 

key to the success so we will review them again.

�Tip #1: Identify Core Features
A HAL needs to be a consistent and standard set of functions that can be used across 

multiple hardware platforms. Microcontrollers come with a standard set of peripherals, 

all of which serve a particular purpose in an embedded system. When developing a 

HAL, examine each of the standard microcontroller peripherals and identify their core 

features. A few core features that would be needed for a communication device, for 

example, would be initialization, transmit, and receive functions. These are basic must-

have functions that would be needed in nearly any application. An example of a core 

HAL for a UART can be found in Figure 6-5.

�Tip #2: Avoid an All-Encompassing HAL
Engineers sometimes fall into the “one ring to rule them all” trap. The trap is that 

engineers start with something simple and elegant and then grow the solution to cover 

the universe. HAL designers should avoid trying to create an all-encompassing or 

singular HAL to rule every microcontroller device and peripheral. The reason to avoid an 

all-encompassing HAL is that complexity, cost, and the potential for bugs will drastically 

increase if you try to create one. Every microcontroller has niche features, so it would just 

be impossible to create a standard and elegant HAL for them all.

2�Originally published on June 2, 2015 @ EDN.com: http://www.edn.com/electronics-blogs/
embedded-basics/4439613/10-Tips-for-designing-a-HAL

Figure 6-5.  Example core UART features
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�Tip #3: Add Register-Access Hooks
What can a developer do to handle niche peripheral features that aren’t handled by the 

HAL? The answer is to build register-access functions into the HAL. A HAL can expose 

the fact that it doesn’t cover every possible use and state of the peripheral and instead 

provide write and read access to select registers within the driver. The register-access 

functions would be considered “expert”-mode HAL functions that should be used 

only by developers who are familiar with the inner workings of the microcontroller. An 

example of how the register-access functions might look can be seen in Figure 6-6.

Figure 6-6.  Register-access HAL example

�Tip #4: Use Doxygen to Outline the HAL
A great way to plan and develop documentation for a HAL is to outline it using Doxygen. 

There are several advantages to using Doxygen to plan the HAL. First, Doxygen uses 

code comments to generate HTML, RTF, and PDF documents, which means the 

developer already has source comments on what the different functions are supposed 

to do. Second, since the comments for the HAL are automatically developed, the HAL 

source files become a blank template in which developers can fill in the HAL functions 

per the software architecture and requirements. Finally, any updates that are made to 

the HAL over time can be made in one place, the source files, and then the updates easily 

propagate to the documentation.

�Tip #5: Get a Second Set of Eyes
Getting a second set of eyes on the HAL is a wonderful way to get a fresh perspective. In 

fact, one of the best things to do during any development cycle is to get multiple eyes on 

the design. Every engineer has his or her own views and experiences that can contribute to 

the HAL. Feedback from multiple parties, especially those that may have to use the HAL, is 

a great way to minimize how many changes will need to be made to the HAL and helps to 

ensure that the HAL will survive long term to maximize code reuse and minimize cost.
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�Tip #6: Don’t Be Afraid to Iterate
During the first release of a HAL, there are going to be minor problems and discoveries 

that were overlooked during its design and review. Don’t sweat it! Designing a perfect 

HAL is unrealistic, and the goal should be to develop one that is good enough to start 

using. Gather feedback from the users of the HAL and then make minor iterative 

updates. Make sure that the changes are well documented so that legacy HAL users can 

easily update to the latest revision. After a few iterations, a developer will find that their 

HAL has become a very well-oiled machine that saves precious development time.

CASE STUDY—ITERATING TO PERFECTION 

No one gets a perfect HAL on the first try. The HAL that I use in my own development efforts 

and with my clients is a HAL that I developed over the course of five to seven years. The first 

iteration worked with a single microcontroller, a PIC24. After the first project, the HAL was 

ported to a Freescale Kinetis-L component, which revealed numerous flaws and holes in the 

HAL. The next port proved to require only minor cosmetic changes.

Every iteration afterward didn’t change the existing HAL at all but instead added additional 

features, such as handling callbacks and the ability to extend the interface easily. The most 

important aspect was that with each iteration, the documentation became clearer and 

included more examples. Eventually, the HAL matured to the point where porting it to a 

new microcontroller requires nearly no changes whatsoever! Start simple and use the time 

available wisely, and before you know it you will have a robust and portable HAL.

�Tip #7: Keep the View at 30,000 Feet
Remember that one of the HAL's purposes is to provide a standard and consistent 

interface that abstracts the hardware functionality. Keep the interface simple and 

the level of detail about how the hardware works at the 30,000 feet view. A great test 

is to have a manager or a software newbie review the HAL and ensure that they can 

understand how it works.

Keeping the HAL at a high abstraction level will not only help to maximize its use but 

it will also eliminate misunderstandings that can result from long debugging sessions, 

increased costs, or missed deadlines. Also keep in mind that the HAL should allow 

enough leeway so that a developer can implement the HAL functions in way that fits 
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their requirements and application needs. The API or HAL should allow for different 

low-level implementation strategies to be implemented and supported.

�Tip #8: Use Appropriate Naming Conventions
A safe bet when developing a HAL is to use an interface that is ANSI-C compliant. An 

ANSI-C-compliant HAL will ensure portability across multiple compilers and tool 

chains. An example of an ANSI-C-compliant requirement would be to limit the function 

name length to 31 significant characters. Additional considerations would be to use 

standard portable types and avoid compiler intrinsics. Another quick tip is to define a 

short coding standard with naming and coding standard best practices on how the HAL 

interface should be written.

�Tip #9: Include a Parameter for Initialization
One of the most common mistakes encountered when designing a HAL is to have a 

peripheral initialization function take no parameters. In essence, the initialization is 

hard coded for every application. A parameter-less initialization greatly limits the HAL’s 

portability. An initialization function would be better served passing a pointer to a 

configuration table. The simplest implementation would just have an empty void table. 

A more complex implementation would use the pointer to loop through the table and 

configure the peripheral. Either way, passing a pointer provides greater portability and 

reuse to the HAL.

�Tip #10: Deploy on Multiple Development Kits
A simple and effective way to test out a HAL is to deploy it on multiple microcontrollers 

from different silicon vendors. Developing simple test code will help to shake out the 

HAL and elucidate any portability issues up front. Development kits are a great way to 

cheaply get hardware to test HALs on. Most microcontroller development kits cost less 

than $20.
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�Going Further
We’ve examined a fair amount of information on how to create a HAL from a generic 

point of view. In the next chapters, we will walk through the process again for a number 

of microcontroller peripherals. The following are ideas on how you can take the concepts 

in this chapter a bit further:

•	 Download the Doxygen header and source modules from  

https://www.beningo.com/162-code-templates/.

•	 Select three microcontroller development kits to test a HAL on.

•	 Walk through the process in this chapter and design a HAL for the 

GPIO peripheral.

•	 Review any existing HALs and list updates and changes that need to 

be made to them.

•	 Set up a revision-control repository in which to store your 

microcontroller HALs.

•	 Identify two team members to participate in HAL design and 

schedule regular weekly meetings for HAL reviews and development.
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CHAPTER 7

HAL Design for GPIO

“Insufficient facts always invite danger.”

—Spock, Star Trek, Season 1, Episode 25 (“Space Seed,” 1968)

�GPIO Peripherals Overview
The general-purpose input/output peripheral (GPIO), also commonly known as 

the digital input/output peripheral (DIO), is the most commonly used peripheral 

in all embedded systems. The obvious reason is that the GPIO peripheral is how a 

microcontroller interacts with the external world around it. Whether the goal is to blink 

a simple LED by changing the voltage on the pin or to perform a more complex task such 

as multiplexing the pin to an internal peripheral to communicate with a device on the 

SPI bus, a developer needs to understand the ins and outs of the GPIO peripheral.

In general, the GPIO peripheral is the gatekeeper for the microcontroller pins. Digital 

information can be received and transmitted to the pins. Each pin is connected to a 

multiplexer, which in some cases provides limits to the possible peripheral connections 

to the pins. The GPIO peripheral will commonly tri-state during start-up until the 

peripheral has been configured to set its pins to input or outputs. Some microcontrollers 

may have a default input/output setting. The best recommendation if you want to 

understand the full peripheral capabilities is to examine the datasheet in detail.

�Step #1: Review the GPIO Peripheral Datasheet
In order to develop a successful hardware abstraction layer that will withstand the 

tests of time, a development team should review the microcontroller datasheet for 

several different part families and manufacturers. By examining multiple datasheets, 
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the developer will quickly learn which features are common and which are meant to be 

product differentiators.

Before jumping right into the datasheet and getting to work, a team should identify 

at least three different microcontrollers that will be used for comparison. Since each 

microcontroller vendor and architecture can vary drastically in capabilities, selecting 

from the broadest parts range will help ensure that the largest possible combinations 

are examined. For the examples in this book, we will examine the following 

microcontrollers:

•	 NXP Kinetis-L KL25Z family (32-bit ARM Cortex-M0+)1

•	 STMicroelectronics STM32F4 family (32-bit ARM Cortex-M4)2

•	 Microchip PIC24F family (16-bit proprietary core)3

•	 Microchip PIC18F family (8-bit proprietary core)4

From reviewing the preceding list, the reader can see that we have a sampling of 8-, 

16-, and 32-bit cores along with selections from different silicon vendors that contain 

ARM cores. While we will not see every possible permutation for the peripherals, using 

just these four microcontrollers will allow for a complete HAL to be developed.

During the initial datasheet review, developers should be attempting to get a general 

feel for how the peripherals work and its general capabilities. Lower-level details such as 

the register mappings will be examined in depth during the feature-identification step. 

Most microcontroller datasheets are thousands of pages of technical details. In this step, 

just finding the right datasheet and identifying the correct pages and sections in those 

manuals will prepare developers for the real work that follows.

�Step #2: GPIO Peripheral Features
With a basic understanding of the peripheral’s function—in this case, mapping 

the internal peripheral to the pins and controlling the input and outputs to the 

microcontroller—a developer can dive into the details and identify specific peripheral 

1�NXP KL25Z Sub-Family Reference Manual
2�ST Microelectronics STM32F427xx Datasheet
3�Microchip PIC24FJ128GA010 Family Datasheet
4�Microchip PIC18F2455 Datasheet
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features. The easiest way to record the different features is to use an Excel spreadsheet. 

By using a spreadsheet, a developer can list each microcontroller along the spreadsheet’s 

top row, the features down the first column as they are discovered, and then also provide 

a mark to indicate whether the microcontroller under review supports the feature.

Examining each microcontroller’s GPIO datasheet results in a table like Table 7-1.

Table 7-1.  GPIO Feature Comparison

Feature NXP KL25Z STM32F4 PIC24F PIC18F

Pin Output X X X X

Pin Input X X X X

Pin Toggle X X X X

Port Output X X X X

Port Input X X X X

Port Data Direction X X X X

Multiplexing X X X X

Pull-up/down Resistors X X

The table is very useful because at a quick glance developers can see what features 

for the peripheral are common across any microcontroller and which ones are 

specialized. They can also see where the differences are. Take, for example, the STM32F4 

and the PIC18F. Both microcontrollers have internal pull-up resistors, while the other 

microcontrollers don’t have this feature. These minor differences will potentially come 

into play when the HAL is designed or could be critical when the configuration table for 

the peripheral is developed. For GPIO, the differences seem minor, but as we will see 

with other peripherals, the differences can become quite large.

�Step #3: Design and Create the GPIO HAL Interface
Defining the HAL interface is really the most exciting part of the entire process. As the 

reader will discover, once the process is done a few times, a commonality will begin to 

reveal itself and designing the interfaces will eventually become nearly second nature. 

For now, the table that was created in Step #2 is going to prove very important to us. 
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Table 7-1 provides a developer with some functional details that the HAL is going to need 

to exhibit in order to give the application developer enough control over the hardware. 

After all, we want our HAL to abstract the low-level hardware and make it easier for the 

application developer to interact with the microcontroller.

Every HAL interface is going to require, at a minimum, the following:

•	 Initialization

•	 Input/output

•	 Low-level register access

•	 Callbacks

The easiest place to start designing is the initialization. Every peripheral initialization 

will follow a simple design. The initialization will start with a peripheral identifier, such 

as Dio or Gpio, followed by an underscore (_), and then the function that the interface 

will provide. When creating your first HAL, the initialization should return void until the 

interface has become mature enough to return error codes. The choice is completely up 

to the implementer though, if you want to leave the hooks in for errors from the start.

The initialization function should take a pointer to a configuration table that will 

tell the initialization function how to initialize all the Gpio registers. The configuration 

table in systems that are small could contain nearly no information at all, whereas 

sophisticated systems could contain hundreds of entries. Just keep in mind, the 

larger the table is, the larger the amount of flash space is that will be used for that 

configuration. The benefit is that using a configuration table will ease firmware 

maintenance and improve readability and reusability. On very resource-constrained 

systems where a configuration table would use too much flash space, the initialization 

can be hard coded behind the interface, and the interface can be left the same. An 

example for the Dio_Init function can be seen here:

 

The next critical interface for the GPIO HAL is to determine the necessary inputs 

and outputs required by the peripheral. For GPIO, the number of input and output 

interfaces has the potential to get out of control very quickly. A developer could act on 

individual pins, entire ports, adjust modes, and validate inputs, just to name a few. When 

developing an interface, a developer should attempt to minimize it so that it doesn’t 

become too large and unwieldy.
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My personal preference is to operate on the GPIO interface at only the pin level. 

I view every single pin as an individual channel for the peripheral interface and 

design my HAL accordingly. For example, I include ChannelRead, ChannelWrite, and 

ChannelToggle functions within my HAL. ChannelRead is used to read the input state for 

a pin. ChannelWrite is used to write a desired state to an individual pin. ChannelToggle 

will simply toggle the state for the desired pin. I keep each function separate, but if the 

interface were to get too large, these three could be combined into a single function that 

takes a parameter for the pin operation that will be performed on the peripheral.

The input/output interface might not just contain read and write functions. 

There could be times when the pin mode or direction need to be changed during 

program execution. During such a circumstance, a developer may decide that having 

ChannelModeSet and ChannelDirectionSet functions as part of the interface would be 

appropriate.

The next major functions that should be included in the HAL are generic register-

access functions. These functions are designed to handle “extra” peripheral features 

that are NOT common in all microcontrollers. The RegisterWrite and RegisterRead 

functions are meant to allow a developer to access the peripheral functions and then 

extend the HAL into the board support package (BSP) or the application code. By 

extending the HAL in this manner, a HAL can remain constant no matter what special 

features a microcontroller feature may have.

BEST PRACTICE—INTERFACE SIZE

Keep any module interface to a dozen or fewer functions. The more functions there are, the 

more difficult it can be for developers to remember and even find the function call they are 

looking for.

Finally, a developer needs to consider functionality that may need to be set at the 

application layer but that is hidden behind the veil of the HAL. An example might 

be to have generic interrupt service routines that are defined in the driver but whose 

functionality is determined during runtime or at compile time. Once a driver is 

developed, we don’t want to have to change the code from one application to the next. 

Instead, we prefer to use a callback function.
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A callback function allows us to register a custom function during runtime that 

will handle the behavior we are interested in without the need to change the code. It’s 

completely possible that we would not use a callback function in an application but still 

would want to include it as an option in the HAL. In many situations, the callback function 

is used to register higher-level application code within the lower-level code. A perfect 

example is using a callback to register interrupts within the driver code. The exact code 

that is required for the interrupt service routine (ISR) may be unknown at the time the 

drivers are designed and may change from one application to the next. Using a callback 

keeps the driver code flexible so that it can adapt easily to the application code’s needs.

The resulting interface for the GPIO HAL would look something along the lines of 

Figure 7-1.

Figure 7-1.  GPIO HAL interface

�Step #4: Create GPIO Stubs and Documentation 
Templates
A well-designed HAL will be used from one project to the next and for multiple 

microcontrollers. Once the interface has been designed, a developer can create a 

generic header and source file that can be quickly adapted to any architecture. The 
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template must contain a few simple components, fully defined interface stubs, and 

documentation.

The interface stubs are the declarations contained in a header file and the definitions 

for the interface found in the source file. One recommendation for the template file 

is to use the word TYPE where a developer would normally put the C language type. 

The reason for doing this is that a team may be working with an 8-bit, 16-bit, or 32-

bit microcontroller whose registers will vary in size based on the architecture. When 

the template is used to create real code, the template is copied and then each TYPE is 

updated to the appropriate architecture bus width.

Each interface designed into the HAL should be documented. In an earlier chapter, 

we examined how Doxygen can be used to document a header and source file along with 

how to document functions and declarations. These skills will be essential to properly 

documenting the HAL. In fact, the example templates that were developed earlier will be 

directly applied to create the HAL template.

The template is designed to contain common interfaces and documentation but 

can also contain common code! For example, earlier we examined how to create 

configuration tables, and since the HAL is designed for common peripheral features, a 

configuration template file can also be created that contains the default configuration 

for any microcontroller. We can add any other code, such as the ability to read and write 

GPIO pins, that will not change with the architecture. The ability to leverage code in this 

manner can be very powerful and allows a developer to create drivers based on the HAL 

template in a few hours rather than days or weeks.

During the template-development stage, a team should also examine each interface 

and document all the pre-conditions and post-conditions that are expected for the 

interface. For example, calling the Dio_Init function on an ARM-based microcontroller 

before enabling the GPIO clock will result in a failed initialization. Somewhere within the 

interface template the documentation needs to state that a pre-condition for executing 

the Dio_Init HAL is that the GPIO peripheral clock has been enabled. A simple problem 

could occur if the configuration table has not been fully populated. For that reason, 

another pre-condition would be that the configuration table has a size greater than zero.

The idea of defining pre-conditions and post-conditions is not new to us, since we 

have already discussed the concept for design-by-contract. In this case, a developer 

uses Doxygen to document the contract between any user for the interface and what 

the interface will do for the caller. The assert macro can even be used in the template 

to ensure that the pre-conditions and post-conditions are adhered to in any subsequent 

software.
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For the GPIO HAL, Figure 7-2 shows an overview of the interface and how it 

is organized into different files. The HAL contains header and source modules for 

configuration data that is used to initialize the peripheral on startup and then header 

and source modules that contain the behavior functions for the HAL.

Figure 7-2.  GPIO HAL organization

So far, we have discussed every aspect required to develop our template and 

application stubs. Let’s now examine the documentation for each interface in the GPIO 

HAL. Listings 7-1 to 7-4 provide the documentation for each HAL GPIO interface. The 

documentation is detailed and fully self-explanatory, so I leave it up to the reader to 

examine each figure before catching back up with me in Step #5.

Listing 7-1.  Code Listing for Dio_Config.h

/** @file dio_cfg.h

 *  @brief This module contains interface definitions for the

* Dio configuration. This is the header file for the definition of the

* interface for retrieving the digital input/output configuration table.

*/

#ifndef DIO_H_

#define DIO_H_

/**********************************************************************

* Includes

**********************************************************************/

/**********************************************************************

* Preprocessor Constants

**********************************************************************/

/**
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 * Defines the number of pins on each processor port.

 */

#define NUMBER_OF_CHANNELS_PER_PORT         8U

/**

 *  Defines the number of ports on the processor.

 */

#define NUMBER_OF_PORTS                 8U

/**********************************************************************

* Typedefs

**********************************************************************/

/**

 * Defines the possible states for a digital output pin.

 */

 typedef enum

 {

    DIO_LOW,                                  /** Defines digital state 

ground */

    DIO_HIGH,                                 /** Defines digital state 

power */

    DIO_PIN_STATE_MAX                        /** Defines the maximum 

digital state */

 }DioPinState_t;

/**

 * Defines an enumerated list of all the channels (pins) on the MCU

* device. The last element is used to specify the maximum number of

* enumerated labels.

 */

typedef enum

{

   /* TODO: Populate this list based on available MCU pins */

   FCPU_HB,                   /**< PORT1_0 */

   PORT1_1,                   /**< PORT1_1 */
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   PORT1_2,                   /**< PORT1_2 */

   PORT1_3,                   /**< PORT1_3 */

   UHF_SEL,                   /**< PORT1_4 */

   PORT1_5,                   /**< PORT1_5 */

   PORT1_6,                   /**< PORT1_6 */

   PORT1_7,                   /**< PORT1_7 */

   DIO_MAX_PIN_NUMBER    /**< MAX CHANNELS */    

}DioChannel_t;

/**

 * Defines the possible DIO pin multiplexing values. The datasheet

* should be reviewed for proper muxing options.

 */

typedef enum

{

   /* TODO: Populate with possible mode options */

   DIO_MAX_MODE    

}DioMode_t;

/**

 * Defines the possible states of the channel pull-ups

 */

typedef enum

{

   DIO_PULLUP_DISABLED,     /*< Used to disable the internal pull-ups */

   DIO_PULLUP_ENABLED,      /*< Used to enable the internal pull-ups */

   DIO_MAX_RESISTOR         /*< Resistor states should be below this value 

*/

}DioResistor_t;

/**

 * Defines the digital input/output configuration table’s elements that are 

used

 * by Dio_Init to configure the Dio peripheral.

 */
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typedef struct

{

    /* TODO: Add additional members for the MCU peripheral */

    DioChannel_t Channel;          /**< The I/O pin        */

    DioResistor_t Resistor;         /**< ENABLED or DISABLED     */

    DioDirection_t Direction;    /**< OUTPUT or INPUT                */

    DioPinState_t Data;               /**<HIGH or LOW          */

    DioMode_t Function;            /**< Mux Function  - Dio_Peri_Select*/

}DioConfig_t;

/**

 * Defines the slew rate settings available

 */

typedef enum

{

  FAST,      /**< Fast slew rate is configured on the corresponding pin, */

  SLOW      /**< Slow slew rate is configured on the corresponding pin, */

}DioSlew_t;

/**********************************************************************

* Function Prototypes

**********************************************************************/

#ifdef __cplusplus

extern "C"{

#endif

const DioConfig_t * const Dio_ConfigGet(void);

#ifdef __cplusplus

} // extern "C"

#endif

#endif /*DIO_H_*/

/***End of File****************************************************/
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Listing 7-2.  Code Listing for Dio_Config.c

/** @file dio_cfg.c

 *  @brief This module contains the implementation for the digital

* input/output peripheral configuration

 */

/**********************************************************************

* Includes

**********************************************************************/

#include "dio_cfg.h"                    /* For this modules definitions */

/**********************************************************************

* Module Preprocessor Constants

**********************************************************************/

/**********************************************************************

* Module Preprocessor Macros

**********************************************************************/

/**********************************************************************

* Module Typedefs

**********************************************************************/

/*********************************************************************

* Module Variable Definitions

**********************************************************************/

/**

 * The following array contains the configuration data for each

* digital input/output peripheral channel (pin). Each row represents a * 

single pin. Each column is representing a member of the DioConfig_t

* structure. This table is read in by Dio_Init, where each channel is then

* set up based on this table.

 */
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const DioConfig_t DioConfig[] =

{

/*               Resistor                                    Initial     */

/* Channel       Enabled       Direction       Pin           Function    */

/*                                                                       */

{ PORT1_0,       DISABLED,     OUTPUT,         HIGH,         FCN_GPIO    },

{ PORT1_1,       DISABLED,     OUTPUT,         HIGH,         FCN_GPIO    },

{ PORT1_2,       DISABLED,     OUTPUT,         HIGH,         FCN_GPIO    },

{ PORT1_3,       DISABLED,     OUTPUT,         HIGH,         FCN_GPIO    },

{ PORT1_4,       DISABLED,     OUTPUT,         HIGH,         FCN_GPIO    },

{ PORT1_5,       DISABLED,     OUTPUT,         HIGH,         FCN_GPIO    },

{ PORT1_6,       DISABLED,     OUTPUT,         HIGH,         FCN_GPIO    },

{ PORT1_7,       DISABLED,     OUTPUT,         HIGH,         FCN_GPIO    },

};

/**********************************************************************

* Function Prototypes

**********************************************************************/

/**********************************************************************

* Function Definitions

**********************************************************************/

/**********************************************************************

* Function : Dio_Init()

*//**

* \b Description:

*

* This function is used to initialize the Dio based on the configuration

* table defined in dio_cfg module.

*

* PRE-CONDITION: Configuration table needs to populated (sizeof > 0)

*

* POST-CONDITION: A constant pointer to the first member of the

* configuration table will be returned.

*
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* @return               A pointer to the configuration table.

*

* \b Example Example:

* @code

* const Dio_ConfigType *DioConfig = Dio_GetConfig();

*

* Dio_Init(DioConfig);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

*

**********************************************************************/

const DioConfig_t * const Dio_ConfigGet(void)

{

/*

* The cast is performed to ensure that the address of the first element

*  of configuration table is returned as a constant pointer and NOT a

* pointer that can be modified.

*/

   return (const *)DioConfig[0];

}

/*************** END OF FUNCTIONS ********************************/

Listing 7-3.  Listing for Dio.h

/** @file dio.h

 *  @brief The interface definition for the dio.

 *

 *  This is the header file for the definition of the interface for a digital

 *  input/output peripheral on a standard microcontroller.

 */
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#ifndef DIO_H_

#define DIO_H_

/**********************************************************************

* Includes

**********************************************************************/

#include <stdint.h>             /* For standard type definitions */

#include "dio_cfg.h"            /* For dio configuration */

#include "constants.h"          /* For HIGH, LOW, etc */

/**********************************************************************

* Preprocessor Constants

**********************************************************************/

/**********************************************************************

* Configuration Constants

**********************************************************************/

/**********************************************************************

* Macros

**********************************************************************/

/**********************************************************************

* Typedefs

**********************************************************************/

/**********************************************************************

* Variables

**********************************************************************/

/**********************************************************************

* Function Prototypes

**********************************************************************/

#ifdef __cplusplus

extern "C"{

#endif
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void Dio_Init(const DioConfig_t * const Config);

DioPinState_t Dio_ChannelRead(DioChannel_t Channel);

void Dio_ChannelWrite(DioChannel_t Channel, DioPinState_t State);

void Dio_ChannelToggle(DioChannel_t Channel);

void Dio_RegisterWrite(uint32_t Address, TYPE Value);

TYPE Dio_RegisterRead(uint32_t Address);

void Dio_CallbackRegister(DioCallback_t Function,

TYPE (*CallbackFunction)(type));

#ifdef __cplusplus

} // extern "C"

#endif

#endif /*DIO_H_*/

/*** End of File ******************************************************/

Listing 7-4.  Listing for Dio.c

/** @file dio.c

 *  @brief The implementation for the dio.

 */

/**********************************************************************

* Includes

**********************************************************************/

#include "dio.h"                /* For this modules definitions */

#include <xxx.h>                     /* For Hardware definitions     */

/**********************************************************************

* Module Preprocessor Constants

**********************************************************************/

/*********************************************************************

* Module Preprocessor Macros

**********************************************************************/
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/**********************************************************************

* Module Typedefs

**********************************************************************/

/**********************************************************************

* Module Variable Definitions

**********************************************************************/

/**

*  Defines a table of pointers to the peripheral input register on the

* microcontroller.

*/

static TYPE volatile * const DataIn[NUM_PORTS] =

{

        (TYPE*)&REGISTER1, (TYPE*)&REGISTER2,

};

/**

 *  Defines a table of pointers to the peripheral data direction register 

on

* the microcontroller.

 */

static TYPE volatile * const DataDirectin[NUM_PORTS] =

{

        (TYPE*)&REGISTER1, (TYPE*)&REGISTER2,

};

/**

 *  Defines a table of pointers to the peripheral latch register on the

 *  microcontroller

 */

static TYPE volatile * const DataOut[NUM_PORTS] =

{

        (TYPE*)&REGISTER1, (TYPE*)&REGISTER2,

};

/**
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 *  Defines a table of pointers to the peripheral resistor enable register

 *  on the microcontroller

 */

static TYPE volatile * const Resistor[NUM_PORTS] =

{

        (TYPE*)&REGISTER1, (TYPE*)&REGISTER2,

};

/**

 *  Defines a table of pointers to the port’s function select register

 *  on the microcontroller

 */

static TYPE volatile * const Function[NUM_PORTS] =

{

        (TYPE*)&REGISTER1, (TYPE*)&REGISTER2,

};

/**********************************************************************

* Function Prototypes

**********************************************************************/

/**********************************************************************

* Function Definitions

**********************************************************************/

/*********************************************************************

* Function : Dio_Init()

*//**

* \b Description:

*

* This function is used to initialize the Dio based on the configuration

* table defined in dio_cfg module.

*

* PRE-CONDITION: Configuration table needs to populated (sizeof > 0) <br>

* PRE-CONDITION: NUMBER_OF_CHANNELS_PER_PORT > 0 <br>

* PRE-CONDITION: NUMBER_OF_PORTS > 0 <br>

* PRE-CONDITION: The MCU clocks must be configured and enabled.

*
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* POST-CONDITION: The DIO peripheral is set up with the configuration

* settings.

*

* @param                Config is a pointer to the configuration table that

*                                       contains the initialization for the 

peripheral.

*

* @return               void

*

* \b Example:

* @code

* const DioConfig_t *DioConfig = Dio_ConfigGet();

*

* Dio_Init(DioConfig);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*

**********************************************************************/

void Dio_Init(const DioConfig_t * Config)

{

        /* TODO: Define implementation */

}

/**********************************************************************

* Function : Dio_ChannelRead()

*//**

* \b Description:

*
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*  This function is used to read the state of a dio channel (pin)

*

* PRE-CONDITION: The channel is configured as INPUT <br>

* PRE-CONDITION: The channel is configured as GPIO <br>

* PRE-CONDITION: The channel is within the maximum DioChannel_t

* definition

*

* POST-CONDITION: The channel state is returned.

*

* @param                Channel is the DioChannel_t that represents a pin

*

* @return               The state of the channel as HIGH or LOW

*

* \b Example:

* @code

*   uint8_t pin = Dio_ReadChannel(PORT1_0);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*

**********************************************************************/

DioPinState_t Dio_ChannelRead(DioChannel_t Channel)

{

}

/**********************************************************************

* Function : Dio_ChannelWrite()

*//**
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* \b Description:

*

*  This function is used to write the state of a channel (pin) as either

* logic high or low through the use of the DioChannel_t enum to select

* the channel and the DioPinState_t to define the desired state.

*

* PRE-CONDITION: The channel is configured as OUTPUT <br>

* PRE-CONDITION: The channel is configured as GPIO <br>

* PRE-CONDITION: The channel is within the maximum DioChannel_t definition

*

* POST-CONDITION: The channel state will be State

*

* @param                Channel is the pin to write using the DioChannel_t

*                                       enum definition

* @param                      State is HIGH or LOW as defined in the

*                                        DioPinState_t enum

*

* @return               void

*

* \b Example:

* @code

*   Dio_WriteChannel(PORT1_0, LOW);     // Set the PORT1_0 pin low

*   Dio_WriteChannel(PORT1_0, HIGH);    // Set the PORT1_0 pin high

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*
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**********************************************************************/

void Dio_ChannelWrite(DioChannel_t Channel, DioPinState_t State)

{

}

/**************************************************************************

* Function : Dio_ChannelToggle()

*//**

* \b Description:

*

*  This function is used to toggle the current state of a channel (pin).

*

* PRE-CONDITION: The channel is configured as OUTPUT <br>

* PRE-CONDITION: The channel is configured as GPIO <br>

* PRE-CONDITION: The channel is within the maximum DioChannel_t definition

*

* POST-CONDITION:

*

* @param                Channel is the pin from the DioChannel_t that is

*                                       to be modified.

*

* @return               void

*

* \b Example:

* @code

*    Dio_ChannelToggle(PORTA_1);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister
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*

* <br><b> - HISTORY OF CHANGES - </b>

*

**********************************************************************/

void Dio_ChannelToggle(DioChannel_t Channel)

{

}

/**************************************************************************

* Function : Dio_RegisterWrite()

*//**

* \b Description:

*

*  This function is used to directly address and modify a Dio register.

* The function should be used to access specialied functionality in the

* Dio peripheral that is not exposed by any other function of the

* interface.

*

* PRE-CONDITION: Address is within the boundaries of the Dio register

* addresss space

*

* POST-CONDITION: The register located at Address with be updated

* with Value

*

* @param                Address is a register address within the Dio

*                                       peripheral map

* @param                     Value is the value to set the Dio register to

*

* @return               void

*

* \b Example:

* @code

*    Dio_RegisterWrite(0x1000, 0x15);

* @endcode

*
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* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*

**********************************************************************/

void Dio_RegisterWrite(uint32_t Address, TYPE Value)

{

}

/**********************************************************************

* Function : Dio_RegisterRead()

*//**

* \b Description:

*

*  This function is used to directly address a Dio register. The function

*  should be used to access specialied functionality in the Dio peripheral

*  that is not exposed by any other function of the interface.

*

* PRE-CONDITION: Address is within the boundaries of the Dio register

* addresss space

*

* POST-CONDITION: The value stored in the register is returned to the

* caller

*

* @param                Address is the address of the Dio register to read

*

* @return               The current value of the Dio register.

*

* \b Example:

* @code
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*    DioValue = Dio_RegisterRead(0x1000);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*

*

**********************************************************************/

TYPE Dio_RegisterRead(uint32_t Address)

{

}

/**********************************************************************

* Function : Dio_CallbackRegister()

*//**

* \b Description:

*

* This function is used to set the callback functions of the dio driver. By

* default, the callbacks are initialized to a NULL pointer. The driver may

* contain more than one possible callback, so the function will take a

* parameter to configure the specified callback.

*

* PRE-CONDITION: The DioCallback_t has been populated

* PRE-CONDITION: The callback function exists within memory.

*

* POST-CONDITION: The specified callback function will be registered

* with the driver.

*
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* @param       Function is the callback function that will be registered

* @param       CallbackFunction is a function pointer to the desired

*                         function

*

* @return      None.

*

* \b Example:

* @code

*    DioCallback_t Dio_Function = DIO_SAMPLE_COMPLETE;

*

*    Dio_CallbackRegister(Dio_Function, Dio_SampleAverage);

* @endcode

*

* @see Dio_Init

* @see Dio_ChannelRead

* @see Dio_ChannelWrite

* @see Dio_ChannelToggle

* @see Dio_RegisterWrite

* @see Dio_RegisterRead

* @see Dio_CallbackRegister

*

**********************************************************************/

void Dio_CallbackRegister(DioCallback_t Function,

TYPE (*CallbackFunction)(type))

{

}

/*************** END OF FUNCTIONS ********************************/

�Step #5: Implement GPIO HAL for Target Processor
To many developers, Step #5 is the most exciting part for the development process—

porting the HAL to a real target. In the following example, the GPIO HAL is implemented 

for the NXP KL25Z Freedom Board, which contains an ARM Cortex-M microcontroller. 
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In the examples that follow, I’ve stripped out the function documentation and focused 

just on the executable code.

Let’s start by examining the pointer arrays. Listing 7-5 shows how the GPIO registers 

can be organized into similar groupings and mapped to memory. A pointer array is 

created for each register type within the GPIO peripherals. A pointer to the register is 

then added to the array, which will later allow the initialization and application code to 

simply loop through the array to access the register.

Listing 7-5.  Pointer Array Memory Map Example for Kinetis-L KL25Z

/**

 *  Defines a table of pointers to the Port Data Input Register

 */

uint32 volatile * const portsin[NUM_PORTS] =

{

        (uint32*)&GPIOA_PDIR, (uint32*)&GPIOB_PDIR,

};

/**

 *  Defines a table of pointers to the port’s data-direction register

 */

uint32 volatile * const portsddr[NUM_PORTS] =

{

        (uint32*)&GPIOA_PDDR, (uint32*)&GPIOB_PDDR

};

/**

 *  Defines a table of pointers to the Port Data Output Register

 */

uint32 volatile * const ports[NUM_PORTS] =

{

        (uint32*)&GPIOA_PDOR, (uint32*)&GPIOB_PDOR,

};
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/**

 *  Defines a table of pointers to the Port Data Toggle Register

 */

uint32 volatile * const ptoggle[NUM_PORTS] =

{

        (uint32*)&GPIOA_PTOR, (uint32*)&GPIOB_PTOR

};

/**

 *  Defines a table of pointers to the Pin Control Registers

 */

uint32 volatile * const pinctl[NUM_PORTS] =

{

        (uint32*)&PORTA_PCR0, (uint32*)&PORTB_PCR0

};

Let’s start examining the Dio_Init code, which can be found in Listing 7-6. The 

initialization is straightforward. A pointer to the configuration table is passed into the 

interface, and a for loop is used to read each element one row at a time. Based on the 

information stored in the configuration register, the appropriate register is accessed 

through the pointer array and the correct bits within the register are set based on the 

configuration.

Listing 7-6.  GPIO Initialization Example for Kinetis-L KL25Z

void Dio_Init(const Dio_ConfigType * Config)

{

 uint8 i = 0;                   // Loop counter variable

 uint8 number = 0;             // Port Number

 uint8 position = 0;             // Pin Number

 // Loop through all pins, set the data register bit and the data-direction

 // register bit according to the dio configuration table values

  for (i = 0; i < NUM_DIGITAL_PINS; i++)

  {

  number   = Config[i].Channel / NUM_PINS_PER_PORT;

  position = Config[i].Channel % NUM_PINS_PER_PORT;
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   // Set the Data-Direction register bit for this channel

if (Config[i].Direction == OUTPUT)

{

 *portsddr[number] |= (1UL<<(position));

 }

 else

 {

  *portsddr[number] &=~ (1UL<<(position));

  }

// Set the Data register bit for this channel

if (Config[i].Data == HIGH)

{

*ports[number] |= (1UL<<(position));

}

else

{

*ports[number] &= ~(1UL<<(position));

}

   }

}

Once the initialization code is created, the remaining HAL functions are relatively 

simple to implement. They simply access the pointer array and either set or retrieve 

register data. For example, the Dio_ChannelRead code, which can be seen in Listing 7-7, 

reads in the state for the input register, shifts the data, and determines whether the bit is 

set high or low.

Listing 7-7.  GPIO ChannelRead Example for Kinetis-L KL25Z

DioPinState_t Dio_ChannelRead(DioChannel_t Channel)

{

   /* Read the port associated with the desired pin */

   DioPinState_t PortState =

      (DioPinState_t)*portsin[Channel/NUM_PINS_PER_PORT];
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   /* Determine the port bit associated with this channel */

  DioPinState_t PinMask =

    (DioPinState_t)(1UL<<(Channel%NUM_PINS_PER_PORT));

   /* Mask the port state with the pin and return the DioPinState */

   return (( PortState & PinMask) ? DIO_HIGH : DIO_LOW);

}

The Dio_ChannelWrite function needs to determine which GPIO register to access 

and then which bits to set in order to set the state for the GPIO pin. This is done through 

calculating the correct pointer array element to access and then setting the bit within the 

register that corresponds to the pin. An example can be seen in Listing 7-8.

Listing 7-8.  GPIO ChannelWrite Example for Kinetis-L KL25Z

void Dio_ChannelWrite(DioChannel_t Channel, DioPinState_t State)

{

   if (State == DIO_HIGH)

   {

      *ports[Channel/NUM_PINS_PER_PORT] |=

                   (1UL<<(Channel%NUM_PINS_PER_PORT));

   }

   else

   {

      *ports[Channel/NUM_PINS_PER_PORT] &=

             ~ (1UL<<(Channel%NUM_PINS_PER_PORT));

   }

}

The Dio_ChannelToggle function does the exact same thing as Dio_ChannelWrite 

except that rather than accessing the output register, the toggle register is used.  

Listing 7-9 shows the implementation for the toggle function.
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Listing 7-9.  GPIO ChannelToggle Example for Kinetis-L KL25Z

void Dio_ChannelToggle(DioChannel_t Channel)

{

   *ptoggle[Channel/NUM_PINS_PER_PORT] |=

(1UL<<(Channel%NUM_PINS_PER_PORT));

}

In earlier chapters, we discussed the need to extend the HAL interface. The extension 

for the interface is to handle custom peripheral behaviors that are not common to every 

peripheral on every processor. In these applications, the ability to write to and read from 

a generic register is very useful. The great part about implementing generic register read 

and write functions is that once written they can be used repeatedly with only minor 

modifications needed. The recommendation is that good programming practices are 

followed by verifying the address and data that you are trying to access. Listings 7-10 and 

7-11 show an example of what these functions might look like, excluding the defensive 

checks.

Listing 7-10.  GPIO RegisterWrite Example for Kinetis-L KL25Z

void Dio_RegisterWrite(uint32_t Address, TYPE Value)

{

   uint32_t volatile * const RegisterPointer = (uint32_t *) Address;

   *RegisterPointer = Value;

}

Listing 7-11.  GPIO RegisterRead Example for Kinetis-L KL25Z

TYPE Dio_RegisterRead(uint32_t Address)

{

   uint32_t volatile * const RegisterPointer = (uint32_t *) Address;

   return *RegisterPointer;

}
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�Step #6: Test, Test, Test
Setting up and creating test harnesses that can also perform regression testing is beyond 

the scope of this book. Let’s briefly discuss the GPIO peripheral in general and a few tests 

that should be performed after implementation to ensure that the driver is working as 

expected.

First, the initialization function is the most complicated function within the HAL 

interface. The maximum test case number is going to directly depend on the following:

•	 How many registers are included in the peripheral

•	 Maximum possible number of states those registers can have

•	 Maximum combination of states within the registers

In previous chapters, we examined how cyclomatic complexity can serve as an 

indicator of the minimum number of test cases required to prove that a function behaves 

as expected. At the lowest driver layers, cyclomatic complexity will not be much help 

for the configuration code. The registers are really the primary dictator of the number of 

test cases required. Cyclomatic complexity can only help a developer ensure there are 

enough test cases to test their driver functions.

The best place to start is at the configuration table. The configuration table lists the 

primary features of the driver that need to be configured at startup. Manipulating and 

automating this table and its configuration is the best bet for testing the initialization 

code.

A developer will want to make sure that they develop at least enough test cases to 

test all the linearly independent paths within their driver functions as well. Developers 

may even want to consider getting logic analyzers to directly connect to their boards; the 

analyzers can then be read through a script to verify that the input and output states on the 

GPIO pins are correctly controlled. A simple script that uses a UART can also be created 

that will also read in all the register settings and verify that they match what is expected.

�Step #7: Repeat for the Next Peripheral
At this point, the GPIO HAL is designed, templated, and documented, and a test example 

has even been implemented for the NXP KL25Z. After running through a few basic test 

cases to verify that the implementation works as expected, a developer is now ready to 
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move on to the next peripheral and begin designing the next HAL. In the next chapter, 

we will examine the SPI peripheral and how we can design a basic HAL for it using the 

techniques that we have been discussing in this book.

�Going Further
The GPIO peripheral is a foundational module that developers need to take the utmost 

care when developing to ensure that their software scales. The following are some ideas 

on how a developer can take the concepts discussed in this chapter and immediately 

apply them to their own development cycle.

•	 Identify at least three different microcontrollers that you are currently 

working with or interested in working with. Collect the GPIO 

peripheral’s datasheets for each microcontroller.

•	 Review the datasheets in detail and generate a peripheral feature 

list like the one shown in Table 7-1. How do the results compare? 

Are they the same or have new peripheral features such as input 

validation been discovered?

•	 Review the table and identify the features that belong in a standard 

HAL interface. Create an initial HAL interface list and identify the 

input and output features for the interfaces.

•	 Create a documented template using the skills learned in Chapter 5 

on Doxygen and create the GPIO stubs. An alternative to creating the 

template yourself is to visit www.beningo.com and purchase the templates 

developed by Jacob Beningo.

•	 Identify the development board that the first port will be performed 

on. Use the examples in this chapter to fill in the implementation 

for the target. If the reader is interested in a working example that 

can be used for educational purposes, examples for the NXP KL25Z 

development board are available on www.beningo.com under Insights 

➤ Toolkits.
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•	 Develop basic test cases based on the configuration table and HAL 

input and output features. Verify that the ported code behaves as 

expected.

•	 Consider developing test-case document templates that will be used 

to test ported GPIO code.

•	 Investigate how regression testing could be used to automatically 

verify that the HAL is working as expected. Inject an error into the 

code and verify that the regression testing is able to catch the issue.
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CHAPTER 8

HAL Design for SPI

“No sensible decision can be made any longer without taking into account 
not only the world as it is, but the world as it will be.”

—Isaac Asimov

�An Overview of SPI Peripherals
The Serial Peripheral Interface bus (SPI) is a high-speed serial bus that is commonly 

used to interface with external memory, sensors, and many other devices. The SPI bus at 

the hardware level requires the following:

•	 a Master Output Slave Input (MOSI) line

•	 a Master Input Slave Output line (MISO) line

•	 a clock (CLK) line

•	 at least a single slave select (SS) line

Every slave device that communicates with the master, typically the microcontroller, 

has a slave select line that asserts which slave device is being communicated with. 

The SPI bus can support as many slave devices as there are GPIO pins available to 

communicate with them. The fact that a slave select pin is required for every device is 

one disadvantage to using the SPI peripheral.

There are many advantages though. First, SPI is a very simple serial interface. 

For every clock pulse, a master output bit and a slave output bit are clocked out 

simultaneously on the bus. This behavior makes it so that bi-directional communication 

can occur very quickly. Second, the SPI bus typically can communicate at 1 Mbps to 

16 Mbps, which makes it an extremely fast communication channel. There are many 

other advantages to using the SPI bus, but the last one that I will mention is that the SPI 

peripheral is very easy to set up and use.
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Figure 8-1 shows an example of how slave devices would be connected to a 

microcontroller using the SPI bus. As you can see, the more slave devices there are, the 

more GPIO pins that are required for the slave select.

Microcontroller

Device 1

MOSI

MISO

CLK

SS1

Device 2

Device 3

SS2

SS3

Figure 8-1.  Example SPI hardware architecture

�Step #1: Review the SPI Peripheral Datasheet
Just as we discussed before, a developer should gather several different microcontroller 

datasheets in order to perform a comparison between the different peripherals’ 

capabilities. In the previous chapter, we created a simple feature-comparison table for 

the GPIO peripheral, and this is exactly what we will do again for the SPI peripheral. 

Since the SPI peripheral adheres to a strict standard, there will be far fewer differences in 

feature sets than with GPIO.

During the initial datasheet review, developers should be attempting to get a general 

feel for how the peripherals work and their general capabilities. The lower-level details, 

such as the register mappings, are examined closely during the feature-identification 

step. Most microcontroller datasheets contain thousands of pages of technical details. In 

this step, just finding the right datasheet and identifying the correct pages and sections 

in those manuals will prepare the developer for the real work that follows.
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�Step #2: SPI Peripheral Features
My personal preference is to always visualize data. I completely agree with the old 

saying, “A picture is worth a thousand words”. Developers that are pulling together a 

comparison can do so using a simple feature matrix. Using the same microcontrollers as 

we discussed in the last chapter results in a table like Table 8-1.

Table 8-1.  SPI Feature Comparison

Feature NXP KL25Z1 STM32F42 PIC24F3 PIC18F4

Master/Slave X X X X

Tx/Rx X X X X

Wait mode X X

Bi-directional X X

High-speed

dual output

X X

MSB/LSB X X X X

DMA X X

CRC X

The table can be used by developers to quickly determine the common and 

uncommon features in the peripheral that later either will be placed into the HAL or will 

require a HAL extension. When the reader walks through their own SPI peripherals, they 

may find that they have significantly more features available than I’ve listed. The goal 

here is to provide an example and leave some work to the reader. 

1�NXP KL25Z Sub-Family Reference Manual
2�ST Microelectronics STM32F427xx Datasheet
3�Microchip PIC24FJ128GA010 Family Datasheet
4�Microchip PIC18F2455 Datasheet
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�Step #3: Design and Create the SPI HAL Interface
Just as we did before, the next step is to create the SPI HAL interface. Table 8-1 provides 

a developer with some functional details that the HAL is going to need to exhibit in order 

to give the application developer enough control over the hardware. What’s interesting 

about most SPI peripherals is that most of the features can simply be controlled by the 

way we initialize the peripheral. The interface itself only requires a few very simple 

functions. For SPI, the required interfaces will be the following:

•	 Initialization

•	 Data transmit and receive

•	 Low-level register access

•	 Callbacks

You will notice a similarity between these interface needs and the GPIO. The only 

difference is that instead of an Input/Output feature there is a Data Transmit and 

Receive, which could still be considered Input/Output. Most peripherals will have a very 

similar outline for their interface.

A developer will want to decide what the major inputs and outputs required 

to configure and run the SPI bus are and decide on the operations that need to be 

performed on the bus. The operations go in the interface, and the inputs and outputs will 

be used by the operations in some way. For example, a configuration table that is used to 

initialize the SPI peripheral will contain all the data required to set up the peripheral and 

will be passed into the Spi_Init function.

The resulting interface for the SPI HAL would look something along the lines of 

Figure 8-2. Notice how the interface follows a very similar pattern to the GPIO HAL and 

that it is easily readable and extendable.
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�Step #4: Create SPI Stubs and Documentation 
Templates
Once again, get out your template-making hat! It’s time to create the documentation and 

the function stubs that will be used for the SPI HAL. When the stubs and documentation 

are complete, don’t forget to save these templates. They represent the stand-alone SPI 

interface without any implementation details in the modules. It’s always a good idea to 

save a clean template, and then if specific design patterns will be implemented behind 

the scenes, save those separately.

CASE STUDY—DESIGN PATTERNS AND TEMPLATES

Design patterns are a solution to a common problem that exists in software engineering. There 

are many different design patterns, such as using a circular buffer for receiving UART data.

As you develop your own interfaces, drivers, and application code, keep an eye open for 

repeating patterns. These patterns should be captured and saved into a template so that they 

can be reapplied to future applications.

For example, transmitting and receiving data on the SPI bus will use a design pattern for how 

the HAL is designed, but a design pattern can also be used also behind the scenes in the 

implementation,. Design patterns save time by avoiding your having to reinvent the wheel. 

Instead, a better wheel can be made.

Figure 8-2.  SPI HAL interface
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The SPI HAL will require several files in order to contain all the operations necessary 

to communicate with an external device on the SPI bus. The modules that are necessary 

can be found in Figure 8-3.

Figure 8-3.  SPI HAL module files

Once each file has been created, the generic Doxygen template can be used to fill 

in the modules. A quick pass through to update for SPI would then be necessary. There 

are several functions that will need to be added to the modules. In order to save the 

reader time and effort, Listings 8-1 and 8-2 show an example of what is needed. Don’t 

forget that each function should have its inputs and outputs documented as well as 

provide a detailed example of how to use the interface. It also wouldn’t hurt to set up the 

assertions at this point to validate the preconditions and post-conditions.

Listing 8-1.  SPI Init Function Template

/*************************************************************

* Function : Spi_Init()

*//**

* \b Description:

*

* This function is used to initialize the Spi based on the configuration 

table

*  defined in spi_cfg module.

*

* PRE-CONDITION: Configuration table needs to populated (sizeof > 0)

* PRE-CONDITION: The MCU clocks must be configured and enabled.

*

* POST-CONDITION: The peripheral is set up with the configuration

*
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* @param[in] Config is a pointer to the configuration table that contains

*                          the initialization for the peripheral.

*

* @return           void

*

* \b Example:

* @code

*       const SpiConfig_t *SpiConfig = Spi_ConfigGet();

*

*       Spi_Init(SpiConfig);

* @endcode

*

* @see Spi_ConfigGet

* @see Spi_Init

* @see Spi_Transfer

* @see Spi_RegisterWrite

* @see Spi_RegisterRead

* @see Spi_CallbackRegister

*

************************************************************/

void Spi_Init(SpiConfig_t const * const Config)

{

}

Listing 8-2.  SPI Transfer Function Template

/**********************************************************************

* Function : Spi_Transfer()

*//**

* \b Description:

*

* This function is used to initialize a data transfer on the SPI bus.

*
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* PRE-CONDITION: Spi_Init must be called with valid configuration data

* PRE-CONDITION: SpiTransfer_t must be configured for the device

* PRE-CONDITION: The MCU clocks must be configured and enabled.

*

* POST-CONDITION: Data transferred based on configuration

*

* @param[in]      Config is a configured structure describing the data

*                 transfer that occurs.

*

* @return         void

*

* \b Example:

* @code

*       const SpiConfig_t *SpiConfig = Spi_ConfigGet();

*

*       Spi_Init(SpiConfig);

*            Spi_Transfer(AccelerometerConfig);

*

* @endcode

*

* @see Spi_ConfigGet

* @see Spi_Init

* @see Spi_Transfer

* @see Spi_RegisterWrite

* @see Spi_RegisterRead

* @see Spi_CallbackRegister

*

**********************************************************************/

void Spi_Transfer(SpiTransfer_t const * const  Config)

{

}

In order to save the reader time and also muscle fatigue from having to carry 

around a giant and heavy book, the templates for the helper functions and the common 

RegisterRead, RegisterWrite, and callback functions have been left out. They are 
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included in the example templates that go with this book. If needed, refer to Chapter 7 on 

GPIO Hals and review how these function stubs are set up. The only difference between 

the SPI and DIO setups is that the functions are preceded with Spi instead of Dio.

�Step #5: Implement SPI HAL for Target Processor
At this point, a template for the HAL is ready to go. There are several different ways the 

implementation can be done, which we discussed earlier in the book. My personal 

favorite is to use pointer arrays to map memory. This technique is very portable and 

can very quickly be adapted for nearly any microcontroller. For this reason, I’ll show an 

example how I implement SPI using this technique.

In the following example, the SPI HAL is implemented for the NXP KL25Z Freedom 

Board, which contains an ARM Cortex-M microcontroller. I’ve stripped out the function 

documentation and focused just on the executable code since we have already examined 

the documentation that should precede these functions.

Let’s start by examining the pointer arrays. Listing 8-3 shows how the SPI registers 

can be organized into similar groupings and mapped to memory. A pointer array is 

created for each register type within the SPI peripherals. A pointer to the register is 

then added to the array, which will later allow the initialization and application code to 

simply loop through the array to access the register.

Each microcontroller will have different registers and register types. In this example, 

only a few registers are shown to demonstrate the general flow of how a developer would 

implement their driver.

Listing 8-3.  Example SPI Pointer-Array Mapping

/**

 *  Defines a pointer table to the spi control 0 registers.

 */

uint8_t volatile * const spicon1[NUM_SPI_CHANNELS] =

{

        (uint8_t*)&SPI0_C1, (uint8_t*)&SPI1_C1

};
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/**

 *  Defines a pointer table to the spi control 1 registers.

 */

uint8_t volatile * const spicon2[NUM_SPI_CHANNELS] =

{

        (uint8_t*)&SPI0_C2, (uint8_t*)&SPI1_C2

};

/**

 *  Defines a pointer table to the spi status registers.

 */

uint8_t volatile * const spistat[NUM_SPI_CHANNELS] =

{

        (uint8_t*)&SPI0_S, (uint8_t*)&SPI1_S

};

/**

 *  Defines a pointer table to the spi bit-rate control registers.

 */

uint8_t volatile * const spibr[NUM_SPI_CHANNELS] =

{

        (uint8_t*)&SPI0_BR, (uint8_t*)&SPI1_BR

};

Just like before, setting up these pointers is a great way to access memory and set up 

initialization functions that easily loop through a configuration table and then set the bit 

values in the registers. An example initialization function can be found in Listing 8-4.

Listing 8-4.  Example SPI Initialization Function

void Spi_Init(Spi_ConfigType const * const Config)

{

   uint8_t Index = 0;        // Loop index variable

   for(Index=0; Index < NUM_SPI_CHANNELS; Index++)

   {

          if(Config[Index].SpiEnable == ENABLED)
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          {

                        // Enable clock gate for spi channel

                        *spigate |= spipins[Index];

                        // Disable the SPI channel

                        *spicon1[Index] &= ~REGBIT6;

                    // Set the MASTER/SLAVE mode

                    if(Config[Index].MasterMode == MASTER)

                    {

                           *spicon1[Index] |= REGBIT4;

                    }

                    else

                    {

                           *spicon1[Index] &= ~REGBIT4;

                    }

                    // Set SPI clock frequency

                    Spi_SetBaud(Config[Index]);

                    // Set Wait mode

                    if(Config[Index].WaitMode == DISABLED)

                    {

                           *spicon2[Index] |= REGBIT1;

                    }

                    else

                    {

                           *spicon2[Index] &= ~REGBIT1;

                    }

                    // Set Bidirectional mode

                    if(Config[Index].Bidirection == ENABLED)

                    {

                           *spicon2[Index] |= REGBIT0 + REGBIT3;

                    }
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                    else

                    {

                           *spicon2[Index] &= ~(REGBIT0 + REGBIT3);

                    }

                    // Set slave select mode

                    Spi_SetSS(Config[Index]);

                    // Calculate transfer delay using clock frequency

                    Spi_CalcDelay(Config[Index]);

                    // Re-enable the SPI channel

                    *spicon1[Index] |= REGBIT6;

                }

        }

}

In order to save space, the configuration structure is not shown, but from reviewing 

the initialization function, you can easily see the information that is being stored there.

The SPI bus is a unique communication interface in that it receives data while it 

transmits data. This makes the SPI bus very efficient. We can use the transmit buffer to 

store the receive data, which limits how much RAM we need to allocate to communicate 

with slave devices.

Creating a robust Spi_Transfer function isn’t trivial or something that should be 

attempted without first thinking through the design and process. The SPI bus, while 

simple, does require that certain steps be followed in order to successfully handle all the 

possible cases. Figure 8-4 shows the steps the driver must go through to transfer data. 

In many cases, each step can be placed into a separate helper function to keep the code 

readable and maintainable. The function overhead will slightly affect the performance 

unless the functions are in-lined.
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The flow chart looks simple, but there is an important consideration that developers 

need to look at that I often see overlooked. If something goes wrong, the driver needs 

to be able to detect that the communication timed out. Most drivers I review assume 

that everything will always work as expected and end up hanging up because a device 

at some point fails to respond or something happens that prevents the “transmission 

complete” flag from being set. Make sure that you think through the potential failure 

points and how the higher-level application will be notified that a device is not 

responding.

The Spi_Transfer implementation can be found in Listing 8-5.

Listing 8-5.  Example Spi_Transfer Function

void Spi_Transfer(const Spi_TransferType * const Config)

{

       uint16_t i = 0;

       uint16_t j = 0;

       uint32_t x = 0;

       // Setup the spi registers with the spi device settings

       Spi_Setup(Config);

       // Initialize the chip select

       Spi_SetCs(Config);

Figure 8-4.  SPI Transfer Function Flow Chart

Chapter 8  HAL Design for SPI



214

       /***************************************************************

       * Transmit (and receive) the data one byte at a time.

       ***************************************************************/

       for(i = 0; i < Config->NumBytes; i++)

       {

       /***************************************************************

       * Check the shift direction. If it is LSBit first, reverse the order

       * in which we transmit each byte (last byte first) as well.

       ***************************************************************/

       if (Config->Direction == LSB_FIRST)

       {

               j = Config->NumBytes - i - 1;

       }

       else

       {

               j=i;

       }

        Mcu_TimeoutStart(INTERVAL_10MS);

        // Check transmit buffer empty flag

        while(*spistat[Config->SpiChannel] & REGBIT5 == 0)

        {

           if(Mcu_TimeoutCheck() == 1)

           {

              Fault_StateSet(FAULT_SPI_TXFLAG);

              break;

           }

        }

        *spibuf[Config->SpiChannel] = (*(Config->TxRxData + j));

        for(x = 0; x < TransferDelay[Config->SpiChannel]; x++);

        Mcu_TimeoutStart(INTERVAL_10MS);
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        while(*spistat[Config->SpiChannel] & REGBIT7 == 0)      

        {

           if(Mcu_TimeoutCheck() == 1)

           {

              Fault_StateSet(FAULT_SPI_RECEIVE);

              break;

           }

        }

        *(Config->TxRxData + j) = *spibuf[Config->SpiChannel];

        } // End for

        /***************************************************************

        * Latch the data into the slave by de-selecting the chip select.

        ***************************************************************/

        // In some cases the chip select will de-select the device

        // before the last bit is transmitted.  This is due to the flag

        // options of this peripheral.  In order to transmit properly, a

        // slight delay is included before deselection.

        for(x = 0; x < TransferDelay[Config->SpiChannel]; x++);

        Spi_ClearCs(Config);

}

�Step #6: Test, Test, Test
It is very easy for development teams to overlook having a robust and automated test 

system. The time and effort required to create such a system can potentially be daunting, 

especially for small- to medium-size businesses. Don’t let that discourage you from 

developing an automated test harness. The time and cost investment decreases the 

overall software life costs with the ability to easily verify that changes and updates 

haven’t broken code.
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Take the time to implement a test harness at this early development stage and reap 

the rewards for the entire development cycle.

�Step #7: Repeat for the Next Peripheral
At this point, a developer would continue to follow this process and develop a HAL 

for every microcontroller peripheral. This would include peripherals such as analog-

to-digital converters, pulse-width modulators, UARTs, SPI buses, and so on. Since the 

process remains very similar for each peripheral, we will now explore how we can take 

the HAL that we have already started to create and build higher-level APIs that use the 

HALs to perform a more abstract function.

In the next chapter, we will develop a HAL for EEPROM and memory devices that 

can be used to access both internal and external devices. If you are still interested in 

seeing how the HAL might look for other peripherals, “API Standard for MCUs” includes 

a full API listing along with templates. It can be found at www.beningo.com.

�Going Further
The SPI peripheral is a foundational module that developers need to take the utmost 

care developing to ensure that their software scales. The following are some ideas on 

how a developer can take the concepts discussed in this chapter and immediately apply 

them to their own development cycle.

•	 Identify at least three different microcontrollers that you are currently 

working with or are interested in working with. Collect the SPI 

peripheral datasheets for each microcontroller.

•	 Review the datasheets in detail and generate a peripheral feature list 

like the one shown in Table 8-1. How do the results compare? Are 

they the same or do they have new peripheral features beyond what 

we discussed in this chapter?

•	 Review the table and identify the features that belong in a standard 

HAL interface. Create an initial HAL interface list and identify the 

input and output features for the interfaces
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•	 Create a document template using the skills learned in Chapter 5 

on Doxygen and create the SPI stubs. An alternative to creating the 

template yourself is to visit www.beningo.com and purchase the 

templates developed by Jacob Beningo.

•	 Identify the development board that the first port will be performed 

on. Use the examples in this chapter to fill in the implementation 

for the target. If the reader is interested in a working example that 

can be used for educational purposes, examples for the NXP KL25Z 

development board are available on www.beningo.com.

•	 Develop basic test cases based on the configuration table and HAL 

input and output features. Verify that the ported code behaves as 

expected.

•	 Consider developing test-case document templates that will be used 

to test ported SPI code.

•	 Create automated test cases that can be executed daily to verify that 

the HAL is working as expected. Don’t forget to inject errors to verify 

that the regression tests are correct.
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CHAPTER 9

HAL Design for EEPROM 
and Memory Devices

“Before software can be reusable, it must first be usable.”

—Ralph Johnson

�An Overview of Memory Devices
Nearly every embedded system requires non-volatile data storage in one form or 

another. Whether a developer needs to store a simple system state or a complex set 

of calibration data, there are several potential non-volatile storage devices that are 

available, such as the following:

•	 Internal flash

•	 Internal EEPROM

•	 External EEPROM

•	 Externa flash

Using internal flash and EEPROM devices can be useful when you want to limit 

external devices, product size, complexity, and cost. There can be several potential 

issues with using internal memory storage, however. First, internal flash and EEPROM 

devices tend to be more complex to set up and use than external devices. Developers 

must grapple with setting internal clocks perfectly to ensure that the internal memory 

devices are not damaged. Second, application code is stored either in or near the 
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internal memory devices. Manipulating these devices during runtime in a production 

system could result in something going wrong and the application code or calibration 

information being removed from the system.

Throughout my career, I’ve never had any issues using internal flash and EEPROM 

devices. Every time that I have used one though it has required extra upfront care to 

make sure that the implementation was correct. When using internal flash, there are 

several additional issues that need to be addressed, as follows:

•	 How is the internal flash controller affected by a brownout event? 

(I’ve seen the entire flash get erased in this situation when it was 

enabled to erase/write)

•	 What is the maximum number of erase/write cycles? (Internal 

memory is usually less than an external device)

•	 Does a circular buffer-type implementation need to be created in 

order to minimize wear and tear on the flash?

•	 How much drift will there be in the clock at various voltages and 

temperature ranges? Is it enough to cause an erase or write cycle  

to fail?

The worst-case analysis on what can go wrong always seems to bring up more 

potential issues than if you were using an external device. This doesn’t mean that 

developers should avoid internal memory but simply that they need to be careful with 

how they implement it.

In this section, we are going to develop a hardware abstraction layer that can be used 

to govern both internal and external memory devices, with our primary focus being on 

external EEPROM devices. The nice thing about the HAL is that it abstracts out these 

devices so that the underlying details are completely hidden. The device could be an 

internal or external device, on a SPI or I2C bus, or even be for different memories, such 

as EEPROM, Flash, or some other architecture. A properly designed HAL doesn’t care 

about the underlying implementation or architecture, which means that if we do our job 

right, we can design an interface for memory devices once and use it for any memory 

device in any project indefinitely.

Just as we did in the last several chapters, we will continue to follow our simple 

seven-step process to design our memory HAL. In this case, we are going to focus 

primarily on external EEPROM devices, but the HAL can easily be used with any 

memory device on nearly any interface, as we mentioned before.
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�Step #1: Review the EEPROM Peripheral Datasheet
Before a developer can start to design their HAL for memory devices, they need to review 

the datasheets for several devices and determine what the common and uncommon 

features are. If you take a moment to hop on Digikey.com, Mouser.com, or whatever your 

favorite electronic part supplier is, you will notice that there are hundreds of potential 

memory devices that are available, ranging in memory capabilities and interfaces. At 

this first glance, it may seem slightly overwhelming how any developer could create a 

standard interface that covers all those devices, let alone a subset. Don’t be discouraged! 

It turns out that all memory devices have very similar capabilities and that the major 

difference is interface and size. In fact, all these memory devices are managed by a 

JEDEC standard, which not only makes the interface we will develop easy, but even 

makes the underlying code reusable.

At this point, the goal is not to dig into any technical details but rather to identify 

several different devices that the HAL will be based on. Select a few devices from 

manufacturers that you are comfortable with and download the datasheets for a closer and 

more detailed review. In this chapter, I’m going to examine the following memory devices:

•	 Microchip 25AA160D, 16 kb EEPROM1

•	 Microchip 25AA1024, 1 Mb EEPROM2

•	 Rohm BR25L640-W, 64 kb EEPROM3

•	 STMicroelectronics M95512-DR, 512 kB EEPROM4

•	 ONSemi CAT25128, 128 kb EEPROM5

1�Microchip 25AA160D, 16 kb EEPROM, https://www.digikey.com/product-detail/en/
microchip-technology/25AA160D-I-ST/25AA160D-I-ST-ND/2125495

2�Microchip 25AA1024, https://www.digikey.com/product-detail/en/
microchip-technology/25AA1024T-I-SM/25AA1024T-I-SMTR-ND/1228443

3�Rohm BR25L640-W, 64 kb EEPROM
4�STMicroelectronics M95512-DR, 512 kB EEPROM, https://www.digikey.com/product-detail/
en/stmicroelectronics/M95512-DRDW3TP-K/497-14457-1-ND/4729165

5�ONSemi CAT25128, 128 kb EEPROM, https://www.digikey.com/product-detail/en/
on-semiconductor/CAT25128VI-GT3/CAT25128VI-GT3OSTR-ND/2063309
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These devices provide a basic sampling that we can use to develop our HAL, but 

nearly any device could be selected.

CASE STUDY—MEMORY DÉJÀ VU

I was creating a driver for another external memory device when I started to get the feeling 

that I had written the exact same code before. The memory device that I was working with 

was completely different from the one we had used on the last project, yet I kept getting a 

feeling of déjà vu.

Finally, I couldn’t take it any longer and went back to review the code from the previous 

project. Sure enough, despite being a completely different memory device, the basic 

commands were identical! Further investigation revealed that there was a standard that the 

devices were following.

The moral of the story is that we need to always be on the lookout for repeating patterns in the 

work that we do and leverage anything that already exists that we can. After this realization, I 

created a reusable interface that I still use to this day.

�Step #2: EEPROM Peripheral Features
Once the datasheets have been gathered and a developer has had a chance to peruse 

them briefly, it is time to dig into the details and start comparing the different devices. 

Just as before, the easiest way to compare the different features is to create a basic 

spreadsheet and list each device and feature on the axes and then place a checkmark 

where a feature is present on the device. Table 9-1 shows a basic summary of the features 

that I found in the devices I mentioned previously.
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The JEDEC standard can be easily seen in Table 9-1. These are the features that are 

supported by every device, such as the Write Enable and Disable features. Just like with 

a microcontroller peripheral, many memory manufacturers will include the JEDEC 

standard features but also attempt to differentiate themselves by adding additional 

features that developers might find useful. For example, the Microchip 25AA1024 

includes a Page Erase feature, which would typically be present in a flash controller 

rather than an EEPROM controller. The feature gives developers an easy method for 

quickly erasing large amounts of data. Such a feature could be very useful but also very 

dangerous if not properly used and protected in source code.

Table 9-1.  EEPROM Device Feature Comparison

Feature Microchip  
25AA160D

Microchip  
25AA1024

Rohm  
BR25L640-W

STM  
M95512-DR

Write Enable X X X X

Write Disable X X X X

Write X X X X

Read X X X X

Read Status X X X X

Write Status X X X X

Page Erase X

Sector Erase X

Power Down X

Read ID X

Write ID X

Lock Status X
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�Step #3: Design and Create the EEPROM HAL 
Interface
Once again, Table 9-1 is our guide for creating the features and functions that we need in 

our HAL. The functions we create to control our memory devices should be looked at as 

operations to perform on data. The memory locations are the data, and the operations 

might be things such as the following:

•	 Initialization

•	 Writing data

•	 Reading data

•	 Writing and reading the status register

Creating a HAL for EEPROM is just like any other peripheral except in this example 

we are not going to include a callback function. A callback might exist if the EEPROM or 

memory device is internal to the microcontroller. In this example though, the EEPROM 

device is external to the microcontroller, which does not have any way to trigger an 

internal interrupt on the microcontroller. For this reason, a callback is not included. 

If a developer wanted to create an all-encompassing HAL that covered both internal 

and external devices, they could include the callback and then just populate the code 

depending on the circumstances.

An interface example can be seen in Figure 9-1. Notice that this HAL still follows 

the standard pattern we have seen with microcontroller peripherals. There is still an 

initialization function, a read/write function, and then register-access functions. The 

primary difference here is that we have added an additional WriteStateSet function 

that is used to control the write state of the memory. This easily could have been pulled 

into the RegisterWrite capability, but in this example we want to explicitly create it in 

the interface so that application users see that there may be extra steps necessary to work 

with the memory device. If that detail were abstracted into the general RegisterWrite 

capability, it might be easily overlooked. How a developer chooses to handle these types of 

issues is dependent on their needs and preferences. There is not a right or wrong answer.

Chapter 9  HAL Design for EEPROM and Memory Devices



225

The HAL for the memory interface doesn’t look too bad. It could be much worse. The 

first HAL version I created originally had more than a dozen different interfaces! I had 

created the following:

•	 StatusRegisterWriteEnable

•	 StatusRegisterWriteDisable

•	 DataWriteEnable

•	 DataWriteDisable

Then, I had even extended the interface in the original HAL to include custom 

features, such as the following:

•	 EraseChip

•	 EraseSector

•	 ErasePage

•	 PowerDown

•	 ReadID

The result was a HAL that had more than a dozen functions and was very difficult 

to navigate and understand. In time, as I realized that the interface was too large, I 

refactored the HAL so that it represented a much smaller and more manageable function 

set. Everything related to custom features is now extended into a separate module that 

is specific to the device, including all the erase functionality, identification, and energy-

savings modes. The main HAL was also refactored into the final version, shown in 

Figure 9-1.

Figure 9-1.  Example EEPROM HAL interface

Chapter 9  HAL Design for EEPROM and Memory Devices



226

The HAL does include some custom datatypes. The primary HAL includes an 

EepromWriteState_t. This allowed the original WriteEnable and WriteDisable 

functions to be refactored from two separate functions to a single function that is 

controlled by its parameters. The control is created by declaring a typedef enum with the 

possible states, as shown in Figure 9-2.

Figure 9-2.  EEPROM write state enumeration

Figure 9-3.  Example EepromRegister_t definition

Developers also will need to consider the different registers that can be accessed 

through the interface and will make up the EepromRegister_t. In general, this won’t be 

done until the coding stage simply because the registers available will vary from one part 

to the next. Just for fun though, we will get ahead of ourselves and show an example of 

what the EepromRegister_t might look like in Figure 9-3.

At this point, the base HAL is in place and we are ready to start building the 

documentation and software stubs.
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�Step #4: Create EEPROM Stubs and Documentation 
Templates
It is now time to build out the documentation templates and empty function stubs that 

will be used to create the EEPROM HAL. At this point, the reader has gone through 

this process several times and probably doesn’t need to see an example stub for every 

EEPROM function. For this reason, we will focus on providing an example stub for just 

the following functions:

•	 Eeprom_Init

•	 Eeprom_Write

•	 Eeprom_Read

The remaining documentation requirements will be very similar to what we have 

already seen in previous chapters.

The first function to document is the Eeprom_Init function. Eeprom_Init is just 

like every other initialization function that we have seen so far in this book except for 

one crucial fact: the EepromConfig_t needs to contain a member that tells the driver 

what communication port is being used to interact with the EEPROM device. EEPROM 

could be internal to the microcontroller or on an I2C bus, SPI bus, or some other yet to 

be invented interface. My earliest HAL implementations required an SpiTransfer_t or 

I2cTransfer_t to be passed into the initialization function. That version required two 

different HAL sets to be maintained, and, over time, they were refactored into a single 

function that abstracts the communication interface into a configuration parameter.

When the documentation template is created, it is important not to forget about 

determining the pre-conditions and post-conditions that are required in order for 

the operation that will take place to be successful. In the chapter on Doxygen, we 

discussed in detail what developers should be including in their documentation 

along with example templates. Listing 9-1 through Listing 9-3 show how to create the 

documentation stubs for the EEPROM HAL. Don’t forget that there would be other 

functions along with additional source and header documentation.

Chapter 9  HAL Design for EEPROM and Memory Devices



228

Listing 9-1.  Example EEPROM Init HAL Documentation

/**********************************************************************

* Function : Eeprom_Init()

*//**

* \b Description:

*

* This function is used to initialize the eeprom. There are several

* operations that this function performs. First, it configures the

* communication channel that is used to interface with the EEPROM.

* Second, it enables write protection and disables the HOLD hardware

* feature.

*

* PRE-CONDITION: Dio driver initialized

* PRE-CONDITION: Communication driver initialized

*

* POST-CONDITION: The EEPROM device is initialized and write

* protected.

*

* @param      Config is a pointer to a CommBus_t that contains the

* communication bus configuration information for interfacing to the

* EEPROM.

*

* @return     void

*

* \b Example:

* @code

*   const DioConfig_t *DioConfig = Dio_ConfigGet();

*   const SpiConfig_t *SpiConfig = Spi_ConfigGet();

*   const EepromConfig_t *EepromConfig = Eeprom_ConfigGet();

*

*   Dio_Init(DioConfig);

*   Spi_Init(SpiConfig);

*   Eeprom_Init(EepromConfig);

* @endcode

*
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* @see Eeprom_ConfigGet

* @see Eeprom_Init

* @see Eeprom_Read

* @see Eeprom_Write

* @see Eeprom_RegisterWrite

* @see Eeprom_RegisterRead

**********************************************************************/

void Eeprom_Init(const EepromConfig_t * Config)

{

       // Initialization code goes here!

}

Listing 9-2.  Example EEPROM Read HAL Documentation

/**********************************************************************

* Function : Eeprom_Read()

*//**

* \b Description:

*

* This function is used to initialize the eeprom. It currents enables write

* protection and disables the HOLD hardware feature.

*

* PRE-CONDITION: Dio driver initialized

* PRE-CONDITION: Spi driver initialized

* PRE-CONDITION: Eep_Init called

*

* POST-CONDITION: Size bytes are read from location Src into Dest.

*

* @param  Dest - pointer to the location where data will be stored.

* @param  Src  - the starting address that is to be read

* @param  Size - the number of bytes that are going to be read.

*

* @return     void

*

* \b Example:

* @code
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*   const DioConfig_t *DioConfig = Dio_ConfigGet();

*   const SpiConfig_t *SpiConfig = Spi_ConfigGet();

*   const EepromConfig_t *EepromConfig = Eeprom_ConfigGet();

*

*   Dio_Init(DioConfig);

*   Spi_Init(SpiConfig);

*   Eeprom_Init(EepromConfig);

*   Eeprom_Read(Buffer, 0x0, 8);

* @endcode

*

* @see Eeprom_ConfigGet

* @see Eeprom_Init

* @see Eeprom_Read

* @see Eeprom_Write

* @see Eeprom_RegisterWrite

* @see Eeprom_RegisterRead

**********************************************************************/

void Eeprom_Read(uint8_t *Dest, uint32_t Src, uint32_t Size)

{

       // Enter Read code here!

}

Listing 9-3.  Example EEPROM Write HAL Documentation

/**********************************************************************

* Function : Eeprom_Write()

*//**

* \b Description:

*

* This function is used to write data to the eeprom device. There is a 

limit

* of being able to only write 256 bytes of data to the eeprom at a time!

*

* PRE-CONDITION: Dio driver initialized

* PRE-CONDITION: Spi driver initialized

* PRE-CONDITION: Eep_Init called
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*

* POST-CONDITION: Size bytes are written from location Src into Dest.

*

* @param  Dest - Address where the data will be stored in eeprom.

* @param  Src  - pointer to the data to be stored

* @param  Size - the size of the data that is going to be written.

*

* @return     void

*

* \b Example:

* @code

*   const DioConfig_t *DioConfig = Dio_ConfigGet();

*   const SpiConfig_t *SpiConfig = Spi_ConfigGet();

*   const EepromConfig_t *EepromConfig = Eeprom_ConfigGet();

*

*   Dio_Init(DioConfig);

*   Spi_Init(SpiConfig);

*   Eeprom_Init(EepromConfig);

*   Eeprom_Write(0x0, Buffer, 8);

* @endcode

*

* @see Eeprom_ConfigGet

* @see Eeprom_Init

* @see Eeprom_Read

* @see Eeprom_Write

* @see Eeprom_RegisterWrite

* @see Eeprom_RegisterRead

**********************************************************************/

�Step #5: Implement EEPROM HAL for Target 
Processor
Implementing the HAL for an external EEPROM device is a little bit more exciting 

than implementing a microcontroller peripheral driver. The reason is that the external 

EEPROM device follows a standard and uses a communication interface on the 
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microcontroller, which means once we implement the base HAL we can literally reuse 

the implementation without having to make any modifications. The only changes 

that need to be made will be in the configuration files for the EEPROM setup or in the 

extended HAL if we want to implement a non-standard feature.

This is exciting because we are finally at a point where we are writing code once 

and reaping the benefits for every project thereafter. The other HALs certainly can be 

reused, but if a team is moving from one microcontroller to the next, a little more work is 

required, whereas with the external devices this code can be completely reused.

In this section, we are going to look through the implementation for the EEPROM 

HAL, but we are only going to examine a minimum feature set. The EEPROM device will 

also be an external SPI device. We will examine the following functions:

•	 Eeprom_Init

•	 Eeprom_Write

•	 Eeprom_Read

From these implementation details, readers should be able to create and fill in the 

remaining HAL features on their own. Let’s start by examining the Eeprom_Init function 

in Listing 9-4.

Listing 9-4.  Example EEPROM Initialization Function

void Eeprom_Init(const EepromConfig_t *Config)

{

  uint8_t Value;

  // Set up the internal configuration pointer

  EepromConfig = Config;

  // Disable HOLD pin in hardware. We will not be using this function.

  Dio_ChannelWrite(EEPROM_HOLD, HIGH);

  // Read status register

  Value = Eeprom_RegisterRead(EEPROM_READ_STATUS_REG);
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  // Bits 2 and 3 of the status register are the block write protection, so

  // if (Value & 0x0C) is not zero, block write protection is enabled.

  if((Value & 0x0C))

  {

    // Disable write protection

    Eeprom_WriteProtection(EEPROM_WP_DISABLE);

    // Disable block write protection in status register

    Eeprom_RegisterWrite(EEPROM_WRITE_STATUS_REG, 0x00);

  }

}

Notice that the initialization function is simple and could be used with any standard 

EEPROM device. The function starts by assigning the external EEPROM configuration 

pointer to a local, module-defined variable. The hardware write protection is configured, 

followed by the internal write protection. This initialization by default disables the write 

protection, but a developer could create their own initialization that makes this feature 

configuration defined. That would allow the default values to change based on the 

application needs. (I leave that as an exercise for the reader to perform).

The next function that a developer would create is the Eeprom_Write function. An 

example for this function can be seen in Listing 9-5.

Listing 9-5.  Example EEPROM Write Function

void Eeprom_Write(uint32_t Dest, uint8_t *Src,  uint32_t Size)

{

  uint8_t status;

  // Setup Command

  EepromConfig.TxRxData[0] = EEPROM_WRITE;

  EepromConfig.TxRxData[1] = ((Dest & 0xFFFFFF) >> 16);

  EepromConfig.TxRxData[2] = ((Dest & 0xFFFF) >> 8);

  EepromConfig.TxRxData[3] = (Dest & 0xFF);

   // Fill the tx buffer with the data

   for(Index = 0; Index < Size; Index++)
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   {

        EepromConfig.TxRxData[Index + 4] = Src[Index];

   }

  // Change transfer Size. Command, Address, Data

  EepromConfig.NumBytes = Size + 4;

  // Disable the write protection

  Dio_ChannelWrite(EEPROM_WP, DIO_HIGH);

  // Transmit the data command

  Spi_Transfer(&EepromConfig);

  status = Eeprom_RegisterRead(EEPROM_READ_STATUS_REG);

 // Poll the busy bit in status register

  while(status & 0x01)

  {

    status = Eeprom_RegisterRead(EEPROM_READ_STATUS_REG);

  }

  // Set the transfer size back to 2

  EepromConfig.NumBytes = 2;

  // Enable the write protection

  Dio_ChannelWrite(EEPROM_WP, DIO_LOW);

}

The code shown in Listing 9-5 is basic example code that does not perform any safety 

checks on the data size that is coming in or performing any checks to verify that the data 

written was done so successfully. However, it does demonstrate how this code could 

be used with any EEPROM device. In a production-intent implementation, a developer 

would make sure that at least the following cases are considered and handled:

•	 Source address is valid.

•	 Destination address is valid.

•	 Data size is valid.
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•	 Check for write errors.

•	 Verify the written data by reading it back out and comparing it.

The write function starts out by defining the first four bytes in the data stream as 

the command and the address that the data will be written to. Following this setup, the 

data is copied into the transmit buffer. Once again, for production, there should be some 

safety checks to make sure that the transmit buffer does not overflow. If the data cannot 

fit within a single transaction then the code would need to set up multiple write actions. 

To keep things simple, I’ve removed all these details.

With the transmit buffer set up, a developer updates the number of bytes to transmit 

and then initiates the communication transfer. This example shows an explicit call to 

the Spi_Transfer function, but a developer could implement this in such a way that 

the transaction could occur on any bus. To do this, the function call would dereference 

a function pointer to the desired transmit function. Before transmitting and writing the 

data, the function also disables any write protection that might be enabled on the chip.

The write function will not be instantaneous. This driver uses a polled monitoring 

technique to watch the status register for the “write complete” flag to be set. Once the 

write has completed successfully, the write protection is enabled and the local variables 

are reset to their default values.

The EEPROM read function turns out to be just as simple if not more so than the 

write function. The read function can be found in Listing 9-6.

Listing 9-6.  Example EEPROM Read Function

void Eeprom_Read(uint8_t *Dest, uint32_t Src, uint32_t Size)

{

  uint16_t Index = 0;

    // Prepare the command

    EepromConfig.TxRxData[0] = EEPROM_READ;

    EepromConfig.TxRxData[1] = ((Src & 0xFFFFFF) >> 16);

    EepromConfig.TxRxData[2] = ((Src & 0xFFFF) >> 8);

    EepromConfig.TxRxData[3] = (Src & 0xFF);

    // Fill the output buffer with dummy data

    for(Index = 4; Index < Size + 4; Index++)
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    {

      EepromConfig.TxRxData[Index] = 0xAA;

    }

    // Change the number of bytes being transmitted.

    // Command, Address, Dummy Data

    EepromConfig.NumBytes = Size + 4;

    // Transmit the data command

    Spi_Transfer(&EepromConfig);

    // Store the returned data

    for(Index = 0; Index < Size; Index++)

    {

      Dest[Index] = EepromConfig.TxRxData[Index + 4];

    }

    // Set the transfer size back to 2

    EepromConfig.NumBytes = 2;

}

Just like with the write function, the read function starts by configuring the 

command and the address that will be read from. Once this is done, the Spi_Transfer 

function is called to perform the transaction. When all the data has been read into the 

buffer, the function copies the received data into the desired destination. Copying the 

data could cause a slight performance hit on the EEPROM functionality. A developer 

could also create their function so that the data is placed directly into the destination 

location rather than in an intermediary buffer or use a pointer to directly access the data.

Don’t forget that the read function is just an example! Production code should 

include assertion and runtime checks to make sure that the buffers do not overflow and 

that all error conditions and use cases are covered appropriately. It should also take into 

account the efficiency, performance, and memory usage.
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�Step #6: Test, Test, Test
After discussing this step three times previously, I don’t think I have much more to 

add. Testing the HAL is critical and having an automated way to do so will dramatically 

simplify a developer’s life. Early in my career, most companies that I worked for simply 

checked basic functionality and hoped for the best. As I grew as an engineer, I realized 

how important not just full testing is but also automated testing. Early on, there were 

quite a few projects I inherited where even minor changes to the code base would break 

something somewhere in the code.

When something broke, there was no way to truly test the system to make sure that 

everything was still working. Weeks or months later we would discover a bug that, after 

tremendous effort, was traced back to a minor change. (Tracing back to the change 

was only possible because I had forced these companies to start using revision-control 

systems). I can’t stress enough how important testing and automated testing is to 

software that will be reused and ported to multiple products and platforms.

�Step #7: Repeat for the Next Peripheral
At this point, the reader has seen several different examples of how this process can 

be followed to develop a HAL for internal and external peripherals. If the reader were 

developing their own HAL, they would now select their next-highest-priority peripheral 

and begin the process all over again.

Don’t forget that the HAL will not be perfect on the first iteration. Undoubtedly, there 

will be adjustments as new parts are integrated and as products evolve. Don’t worry 

about getting it perfect the first time through.

So far, we have looked at how we can create a base HAL for different devices. Let’s 

now look at how we can extend a HAL using the EEPROM device as an example.

�Extending the EEPROM HAL
So far in this book, we have discussed the fact that we can extend a HAL for custom 

features on a peripheral or device, but we have never examined one! Extending the HAL 

is not difficult, but it is still a good idea to see how it can be done. In this section, that is 

exactly what we are going do.
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Going back to Table 9-1, there are several custom features that do not belong in the 

primary HAL. These features include the following:

•	 Erase modes

•	 Reading chip identification

•	 Low-power modes

While these are all useful features that a developer probably wants to implement, 

they are not supported in every device. They are instead a manufacturer’s custom 

implementation designed to differentiate their product from the competition.  

A developer would add a separate module that would handle these customizations.  

The module name could be anything, but the following are a few suggestions:

•	 hal_device_ext

•	 device_ext

•	 device_hal_ext

As the reader can see, my personal preference is to indicate in some way that the 

HAL is an extension. Some HALs include the word hal in their naming conventions, but 

I typically do not do this. My preference is to specify the device with the assumption that 

the device module contains the HAL functions to control the device. If a developer were 

working with the 25AA1024, they would end up with the following files:

•	 eeprom_25aaxxxx.h

•	 eeprom_25aaxxxx.c

•	 eeprom_25aaxxxx _ext.h

•	 eeprom_25aaxxxx _ext.c

•	 eeprom_25aaxxxx _cfg.h

•	 eeprom_25aaxxxx _cfg.c

Everything required to use a 25AA device would be included in these files. Notice 

that in this example I am putting EEPROM in front of the part number. I do this because 

without it a developer could easily get confused as to the purpose or function that part 

number is associated with. They may find themselves wasting time trying to remember 

which of these ten different part numbers was EEPROM.
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The HAL extension functions will vary depending on the extra features that are 

available on the device. For example, Figure 9-4 shows several new HAL functions that 

are added to the EEPROM module through the _ext file.

Figure 9-4.  Extending the EEPROM HAL

Figure 9-5.  Example EepromErase_t for the extended HAL

The HAL extensions may require additional type definitions in order to constrain 

and define the possible parameters that can be used to control the interface. Earlier, we 

discussed how in my earliest HALs I had a separate function for every erase function on 

the EEPROM device. Having multiple functions to control this behavior can complicate 

the interface and make readability and maintainability worse. For that reason, a single 

function that is then controlled by the parameter is preferred. Figure 9-5 shows an 

example enumeration that would be used to control the erase functions on an EEPROM 

chip. Keep in mind that this is specific to a single chip since most EEPROM devices do 

not require a mass erase function.

As you can see, extending an interface isn’t complicated. Extending an interface is 

just adding additional functionality to an existing HAL. In many instances, the extension 

implementation will use the base HAL’s RegisterWrite and RegisterRead functions to 

access the device’s registers. In this way, the extension is dependent upon the base HAL 

in the implementation. This is not required, but it can simplify the implementation.
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�Going Further
Developing a HAL for an external device such as an EEPROM device is no different 

than creating a HAL for an internal device. The implementation will require accessing 

a communication peripheral such as I2C or SPI, but the HAL design is the same. Now is 

a great time to apply these techniques yourself. The following are some ideas of how a 

developer can take the concepts discussed in this chapter and immediately apply them 

their own development cycle.

•	 Identify at least three EEPROM devices that you are interested in 

working with. Collect the datasheets and begin following the seven 

HAL design steps that we have been discussing. If you want to make 

things interesting, select devices in the following categories:

•	 three external EEPROM and at least one microcontroller with 

internal EEPROM

•	 three external Flash devices and at least three microcontrollers 

that have internal flash controllers

•	 Review the datasheets in detail and generate a peripheral feature list 

like the one shown in Table 9-1. How do the results compare? Are 

they the same or do they have new peripheral features beyond what 

we discussed in this chapter?

•	 Review the table and identify the features that belong in a standard 

HAL interface. Create an initial HAL interface list and identify the 

input and output features for the interfaces.

•	 Create a documented template using the skills learned in Chapter 5 

on Doxygen and create the EEPROM and flash stubs. An alternative 

to creating the template yourself is to visit www.beningo.com and 

purchase the templates developed by Jacob Beningo.

•	 Identify the development board that the first port will be performed 

on. Use the examples in this chapter to fill in the implementation for 

the target.
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•	 Develop basic test cases based on the configuration table and HAL 

input and output features. Verify that the ported code behaves as 

expected.

•	 Consider developing test-case document templates that will be used 

to test ported EEPROM and flash code.

•	 Create automated test cases that can be executed daily to verify that 

the HAL is working as expected. Don’t forget to inject errors to verify 

that the regression tests are correct.

Chapter 9  HAL Design for EEPROM and Memory Devices



243
© Jacob Beningo 2017 
J. Beningo, Reusable Firmware Development, https://doi.org/10.1007/978-1-4842-3297-2_10

CHAPTER 10

API Design for Embedded 
Applications

“. . . the purpose of abstraction is not to be vague, but to create a new seman-
tic level in which one can be absolutely precise.”

—Edsger W. Dijkstra, The Humble Programmer

�Applications Made Easier
Having a well-defined hardware abstraction layer can go a long way in improving 

firmware reusability. Abstracting out the hardware layer is not the only abstraction layer 

available to embedded-software developers. Developers can also make use of APIs, 

which will provide high-level abstractions within the application code and can have just 

as dramatic an effect on code reusability and the overall development cycle as HALs can. 

For all intents and purposes, an API is really just a HAL that doesn’t touch any hardware. 

It’s meant to provide a developer with an abstraction that can be used to simplify and 

speed up application implementation.

APIs make implementing application software easier and faster. A developer that 

needs access to an SD card library doesn’t need to write from scratch the code necessary 

to interact with one. They can use a library that contains a well-defined set of APIs that 

can then perform the necessary operations of the communication channel and talk with 
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the SD card to get the desired result. APIs provide developers with several advantages, 

such as the following:

•	 Creates a black box that performs the desired operation with little to 

no knowledge of how it does it

•	 Increases and improves reusability

•	 Speeds up development

•	 Improves code readability

Creating and using APIs for embedded software in today’s environment really is a 

no-brainer. Developers should be creating APIs to produce more modular and reusable 

code. The benefits have been proven time and time again. However, as developers go 

about creating their APIs, there are several disadvantages that should be kept in mind. 

These include the following:

•	 Each API level will have a minor performance hit when storing the 

function return address on the stack unless the functions are in-lined 

by the compiler.

•	 Libraries from third-party sources could have hidden issues related to 

security, performance, code size, and robustness. Developers should 

carefully study the code that they are using and analyze it.

SOFTWARE TERMINOLOGY

An application framework is a collection of different components, a set of APIs, that are 

interrelated and assist a developer in rapidly developing an application.

In most cases, the benefits far outweigh the disadvantages, and if developers are 

aware of the disadvantages, they can mitigate any potential issues that might arise  

from them.
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�Designing APIs
Creating an API for an embedded application is not much different than the process 

that we have been using throughout this book to create a HAL. The major differences 

are that we are working at a higher abstraction level, removed from the hardware. 

This makes life easier on the developer. We no longer need to compare datasheets for 

multiple microcontroller devices and carefully craft an interface that supports them all. 

The same process used to design a HAL can be used to make an API, with a few minor 

modifications. The modified process for designing an API is as follows:

	 1)	 Identify the features and operations that the API will perform.

	 2)	 Design and create the API.

	 3)	 Create the stubs and documentation templates.

	 4)	 Implement the API.

	 5)	 Test the implementation.

That’s it! The process is shortened by two steps since we don’t have to review a bunch 

of datasheets. The nice part about the API level is that we implement once and only need 

to maintain the interface. The APIs should be usable across platforms, and only HAL 

dependencies would ever need to be updated.

Every best practice that we have discussed related to HALs in this book also applies 

to the API level. For example, developers should try to keep their APIs manageable and 

limited to no more than a dozen per component. A developer should break up and 

organize their component so that it contains four different modules, as follows:

•	 The component header definition file

•	 The component source implementation file

•	 The component configuration header file

•	 The component configuration source file

Keeping a component organized in this fashion will help maximize reuse and will 

also help keep the APIs associated with it organized and easily navigable.
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�Application Frameworks
An application framework is a collection of different components, or set of APIs, that 

are interrelated and assist a developer in rapidly developing an application. Application 

frameworks have been around for PC developers for decades, but embedded-software 

developers really haven’t had application frameworks available to them until recently. 

The reason why is that embedded developers only focused on one-off applications and 

had no reason to create reusable code and application frameworks to help them speed 

up development.

Developers have started to move to 32-bit ARM-based microcontrollers. With this 

transition, the hardware has become so complicated that microcontroller manufacturers 

such as Microchip, Renesas, and ST Microelectronics have started to develop application 

frameworks for their parts. Application frameworks help their customers speed up 

development and abstract out the hardware. Developers therefore don’t need to become 

experts on every register in the microcontroller and how each works. These frameworks 

include not only a HAL but often high-level APIs to implement features such as SD card, 

RTOS, command consoles, and much more. An example application framework from 

Renesas can be found in Figure 10-1. Notice how it includes everything from the board 

support package and HAL to several different application-level functions.

When you are thinking about creating your own APIs and collecting them into a 

framework, take some time to review what has already been done in the industry. You 

might find that you are able to use something that already exists or at least leverage the 

best practices from other teams that have already made progress in developing useful 

reusable firmware.
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�Creating Your Own APIs
Now that we have examined some general APIs and how they can be used with an 

embedded system, it’s time to start carefully considering what the reader should be 

doing to create their own APIs. We don’t necessarily need to create the perfect solution 

or convert every piece of code we write into a masterpiece for reusable software. A 

developer needs to reasonably identify the core application components that offer the 

greatest benefit to being reused in multiple applications. There are several questions 

that a developer should ask themselves as they consider whether a feature should be 

designed so that it can be reused. These include:

•	 Is this component going to be used in more than one application?

•	 Will this component be ported to another hardware platform in the 

future?

Figure 10-1.  Renesas Synergy™ Software Application Framework1

1�https://www.renesas.com/en-us/products/synergy/features.html
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•	 Will there be a long-term benefit to writing this component so that it 

is reusable?

•	 Is there available time and budget to write this code in a reusable 

manner right now?

If the answer to most of these questions is “yes,” then the component should 

probably be written to have a nice API so that it can be easily reused. The real question 

in many developers’ minds might be what embedded-software components lend 

themselves to being reused and are deserving of the time and attention required to 

create a robust API around them?

For every team, the answer will be dependent upon their end application and 

their core intellectual property. However, there are several general examples that are 

necessary in almost every embedded application that we can use as a starting point to 

provide an example for how a developer should design and create their own APIs.2 The 

examples that I am about to provide are major components in an embedded system that 

can be reused. Undoubtedly, you will find that there are many more smaller components.

�Common Software Frameworks—RTOS 
and Schedulers
An obvious component that is present in every embedded system is a scheduler. The 

scheduler might be a simple cooperative scheduler or it very well might be a full-blown 

RTOS. As fun as creating an RTOS might be, scheduling algorithms have been beaten to 

death, and there is no reason to professionally develop yet another RTOS or scheduling 

algorithm. Since most systems have some scheduling element to them, an RTOS is a 

perfect example of a reusable component that can be ported to multiple applications 

and platforms.

The obvious challenge with an RTOS is its API. There is no standard! Every developer 

and their brother who has written their own RTOS has a completely different API than 

everyone else. This can create a huge issue for reuse if a development team might 

possibly swap out RTOSes in the future or wants that component to be modular. In an 

2�http://www.webopedia.com/TERM/L/library.html
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earlier chapter, we discussed how a developer might need to create a wrapper layer in 

their software so that an RTOS can easily be swapped in and out. The wrapper layer, 

shown in Figure 10-2, provides a well-known interface through which to access the 

features available in any RTOS and allows the RTOS to easily be swapped out.

Using a wrapper for the RTOS layer has immediate advantages, such as the following:

•	 Swapping out the RTOS

•	 Consistent application interface for any scheduler

•	 Being highly portable

The only real downside to having a wrapper layer around the RTOS is that there is a 

slight performance hit due to making a function call to get into the wrapper, which then 

must call the associated RTOS function. This disadvantage can be overcome by function 

in-lining and enabling compiler optimizations.

HAL

RTOS

RTOS Wrapper

Application

Other Component Layers

Figure 10-2.  RTOS wrapper layer

Using a wrapper to allow any RTOS to be used in an application is interesting, 

but does anyone in the industry actually do this? Besides an engineering firm that is 

scattered here or there, one major player that does use an RTOS wrapper is Microchip. 

Microchip has its MPLAB® Harmony software, which “adds in the flexibility to use a 

Real-Time Operating System (RTOS) or work without one.”3 They have literally designed 

an RTOS wrapper that allows RTOSes such as

•	 ThreadX;

•	 FreeRTOS;

•	 Micrium OS2 or 3;

3�http://www.microchip.com/mplab/mplab-harmony
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to be swapped into and out of their software platform. The application code makes calls 

to the same API calls, but the API is populated with the specific RTOS feature’s API call.

That is definitely something that a developer who is working on a reusable software 

framework or trying to maximize firmware reuse should take into consideration.

CASE STUDY—YET ANOTHER RTOS

Embedded-software developers love to get down into the bits and bytes and work at the 

hardware level. Real-time developers especially take pride in being able to fine-tune and 

control not just the hardware but also the deterministic timed behavior of the system. These 

developers have always loved to write scheduling algorithms. The problem with writing your 

own scheduler or RTOS is that it has been done a million times by a million engineers.

There are currently over a hundred different real-time operating systems and scheduling 

algorithms commercially available. Designing and getting a basic scheduler up and running 

isn’t a big deal, but creating one that is robust and correct all the time and that is designed 

under a certified development cycle starts to push the time and budgetary constraints 

available on projects today.

The advice I can give is to use a proven scheduling algorithm and only write your own on your 

own free time if it is something that you are passionate about. Writing a scheduler can provide 

great insights into how a real-time scheduler works. Examining and modifying one that already 

exists can be far more efficient, however, and you can learn just as much.

�Common Software Frameworks— Console 
Applications
Console applications are a core component that is included in many embedded 

applications. The console application has its printf functionality, which can help a 

developer see the code’s status, but far more important is the command-handling piece. 

Embedded systems often accept commands externally, whether they are from a host PC 

or a device located through a network across the world.
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The components required to implement a console application are standard.  

A developer needs a communication interface such as a UART or USB that is connected 

to a command parsing and response module. This is standard, and it makes a lot of 

sense to package these components in such a way that they can be reused and integrated 

in a single framework. Figure 10-3 shows an example stack-up. In the example, the 

communication interface is a generic interface that is shared among all communication 

devices. The input module contains the command parser, which would be configurable 

for the application.

HAL

Communication Interface

Console Output

Console Application

Console Input

Figure 10-3.  Software layer stack-up for a console application

The Renesas Synergy Platform does something very similar to this. While their 

platform offers a wide variety of components, one component that I have found to 

be very useful is their console-application module. This module can be added to any 

Synergy project and be connected to USB, a UART, or any communication channel that 

is available on the microcontroller! Once in the project, a developer creates a command 

list and the function that should be executed if the command is received.

These components aren’t just reusable; they also drastically decrease the time required 

to create a console feature on an embedded system. Once again, why reinvent the wheel 

when one already exists? It’s far better to instead invent something that builds upon it!

CASE STUDY—COMMAND PARSERS

Since so many systems have a need to transmit a command, after the third or fourth time 

having to implement one, I designed a configurable and reusable command parser that 

became a necessary element in my bag of tricks. The parser I designed contains several 

elements:

•	 An enum that defines available commands

•	 A function for each command
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•	 A configuration table that lists each available command and has a function pointer 

to the command function

•	 A search algorithm that can find the matching command and execute the 

associated function

This may seem complicated, but I’ve found that once a switch statement grows to more than 

a dozen or so cases, it becomes difficult to manage and maintain. I’ve worked on applications 

that had hundreds of commands and have seen this implemented in a massive, nearly 

unsearchable switch statement.

Using a command parser with the elements I just described can improve

•	 readability;

•	 maintainability; and

•	 portability.

The best part is that it is simple to copy the template into a new application, list the new 

commands, and in a few minutes have a command parser up and running in the system.

�Common Software Frameworks—Bootloaders
One of my all-time favorite frameworks is the bootloader framework that I put together 

and have been using on my own projects and my clients’ projects for the last half a 

decade or so. The ability to update firmware in the field is so important, and yet it’s 

usually the last software piece that any development team thinks to add to their system. 

This leaves developers scrambling at the end of a project to add firmware update 

capabilities to their system.

I quickly found that the problem my clients were facing was multi-fold and included 

the following:

•	 They didn’t know how to write a bootloader.

•	 Microcontroller-vendor bootloaders were example code and did not 

meet production software requirements.

•	 The time required to learn, build, and debug a bootloader on average 

was three months.

•	 Developing a solution in-house could easily cost a company $40,000 

to $60,000 depending on the requirements.
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These were big problems for the clients, especially the timing and robustness 

requirements. So, how do you solve a problem that is common to nearly every 

embedded system and can be time-consuming to build? You create a reusable firmware 

framework that can be ported to multiple hardware platforms!

That is exactly what I did. I took many of the lessons and discussions that we have 

had in this book and applied them to creating a software framework that could be used to 

easily adapt bootloaders to any microcontroller. The framework was not done in a single 

shot, but rather started out with basic capabilities and APIs and then, over the course 

of a half-dozen or so bootloaders, took full shape. This required creating low-level HAL 

drivers and higher-level APIs. The basic, simplified results can be seen in Figure 10-4.

Communication
Interface 

Bootloader Application

Memory
Interface 

Scheduling
Interface

Watchdog
Interface

Drivers

HA
L

Figure 10-4.  Beningo Microcontroller Bootloader Solution (Micro-boot, MCU-
Boot)

Every bootloader requires access to a communication interface, whether it’s an SD 

card, UART, USB, I2C, and so on. The bootloader must access memory in some way. At a 

minimum, it needs to access the internal flash controller, but it may also need to access a 

file system or an external EEPROM device. Bootloaders may require scheduling or basic 

timing in order to detect if an operation has timed out. There is so much more associated 

with a bootloader, but I think the reader gets the idea.

The big question is: how has such a framework helped? The very first bootloader 

I ever wrote took three months of calendar time and approximately eight weeks of 

active development time. (When you take on an activity like this internally, regular 

development must continue, so it is never just the straight workload). The second 

bootloader, now that I had experience under my belt, still took six to eight weeks’ 

development time.

After the second bootloader experience, I realized that I was probably going to be 

creating these throughout my career and should think about designing one that I could 

reuse and port to different applications. I designed a first-pass framework, and the 

third bootloader I wrote took less than four weeks. Adjustments to the framework were 
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made, additional features were added, and the next one took two weeks. With time and 

a reusable framework, bootloader implementation has become extremely easy and fast. 

Table 10-1 shows the progression and the effect that the bootloader framework had on 

the development activity. Obviously, the development effort has greatly benefited from 

the availability of a reusable framework.

Table 10-1.  Bootloader Development Times and Estimated Costs

Bootloader

Iteration

Framework

Available?

Estimated Dev.

Time Comments

1 No 8 Weeks

2 No 8 Weeks

3 Yes 4 Weeks Framework 0.5

4 Yes 3 Weeks Framework 0.8

5 Yes 2 Weeks Framework 1.0

6 Yes 2 Weeks Framework 1.1

7 Yes 2 Weeks Framework 1.2

After examining the data, keep in mind that this is the time necessary to get the 

bootloader up and running. Integrating a user application and updating it to work with 

the bootloader can sometimes be considerable work, depending on how they designed 

their application and the tools that they used.

�Common Software Frameworks—FAT File System
Another component that a developer can leverage and that they probably wouldn’t want 

to create themselves is a FAT file-system component. FAT file systems are often used on 

embedded systems to store log data or files on either an SD card, an external memory 

device, or sometimes even on internal flash memory. There are many different FAT 

file-system components available if one does a quick internet search. One particular 

component that has gained traction and a big following in the embedded space is FatFS.4

4�http://elm-chan.org/fsw/ff/00index_e.html
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FatFs has a great API set. The APIs are all easy to remember and very simple. A short 

listing can be seen in Listing 10-1. You might notice that all the APIs start with the same 

prefix so as to identify that it is a file API, and then the function immediately follows. The 

API is clean and easy to read and remember. One could complain that there are more 

than a dozen functions in the API, but the APIs are so simple and straightforward that 

it wouldn’t make any sense to reduce their number! The dozen functions are a rule of 

thumb, not a law.

Listing 10-1.  FatFs File Access API’s4

f_open - Open/create a file

f_close - Close an open file

f_read - Read data from the file

f_write - Write data to the file

f_lseek - Move read/write pointer, expand size

f_truncate - Truncate file size

f_sync - Flush cached data

f_forward - Forward data to the stream

f_expand - Allocate a contiguous block to the file

f_gets - Read a string

f_putc - Write a character

f_puts - Write a string

f_printf - Write a formatted string

f_tell - Get current read/write pointer

f_eof - Test for end-of-file

f_size - Get size

f_error - Test for an error

What is great about FatFs is that even the file organization is clean and has been well 

thought out. The framework is layered so that a developer only needs to provide some 

low-level access into the hardware, and the higher-level API calls will function on the 

hardware as expected. This is a great example of how to architect software that has a 

clean API and is modular enough to be used on multiple platforms.

Open source software, though, doesn’t always have the greatest implementation. 

A quick analysis shows that there are many functions with a cyclomatic complexity 

greater than 10. In fact, there are several with values greater than 20, and even a few in 

the 30s and 40s. These functions obviously have probably never been fully tested and 

Chapter 10  API Design for Embedded Applications



256

could potentially be harboring unknown bugs just waiting to strike. That doesn’t stop 

engineers from using them. In all honesty, I’ve never had any obvious issues that I’ve 

found when I use them, but still, “buyer” beware.

�Going Further
APIs are the foundation that most modern software is built upon. They nicely abstract out 

and hide the implementation details, allowing developers to focus on their application 

rather than on common software features. The following are several thoughts on where 

you can go from here to improve and get up to speed on creating your own APIs:

•	 Review the best practices for HALs. These best practices also  

apply to APIs.

•	 Go online and review some common open source software. Evaluate 

how well that software provides the following:

•	 Appropriate APIs

•	 Software architecture

•	 Speed that support is provided for

•	 Software-development process

•	 Testing procedures

•	 Review the APIs from different RTOS suppliers. Which APIs seem to 

be the easiest to use and remember?

•	 Review your own software and identify common software features 

that could easily be converted into their own separate reusable 

software governed by a simple set of APIs.

•	 Implement those features as a reusable component and start building 

your own libraries and frameworks.

•	 Examine the software components that are open source and 

microcontroller-vendor-specific that we discussed in this chapter. 

Then do the following:

•	 Identify the best practices used in each.

•	 Determine what could be done better.
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CHAPTER 11

Testing Portable 
Embedded Software

“Program testing can be used to show the presence of bugs, but never to 
show their absence!”

—Edsger W. Dijkstra

“Defect-free software does not exist.”

—Wietse Venema

�Cross Your Fingers and Pray
Testing an embedded system is critical to ensure that it not only meets requirements but 

also has a minimum bug count. Developers can rarely prove that their application has 

no bugs in it, but they can develop extensive test cases that minimize the chances that a 

bug is hiding in their application. Testing strategies can vary from manual system-level 

testing to sophisticated automated tests that are performed on a continuous-integration 

server and reported on a nightly basis.

SOFTWARE TERMINOLOGY

Regression testing is the ability to automatically run test cases that were previously executed 

to verify that they still pass after the software has been modified.
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The worst testing strategy that a development team can have, and unfortunately one 

that I have seen implemented on numerous occasions, is the “cross your fingers and pray” 

strategy. In this implementation, developers spot-check their code and the system to make 

sure that they don’t notice any major system defects. The spot-checking has minimal code 

coverage and is a highly manual procedure. When the product ships, developers mostly 

just cross their fingers and pray that they don’t run into any major issues.

In order to have a consistent test strategy, developers need two key features in their 

tests: automation and regression. Automated tests are necessary because there is no way 

that a developer or a team can dedicate the time and effort necessary to manually check 

that every line of code is executed and behaves as expected. The only way to perform 

these checks is to automate testing so that it can be executed without human interaction.

Once tests are automated, developers can employ regression testing, which is 

the ability to rerun tests that were previously executed to verify that they still pass. 

Regression testing is an amazing tool that, if executed periodically, can show developers 

where feature additions or changes in the code base may have broken the application 

code. Debugging is far more efficient if a developer can be alerted immediately when the 

problem arises in the system rather than weeks or months later.

Development teams that want to reuse their firmware and port it from one hardware 

platform to the next need the ability to automatically test that their ported code is 

working as expected—without requiring significant time. To do so, there are several key 

test areas that need to be developed, as follows:

•	 Unit tests

•	 Functional tests

•	 Regression tests

•	 Integration tests

In this chapter, we will review best practices and considerations that developers 

should look at when developing a test strategy for their reusable firmware.

�Unit Testing
The most basic testing that every developer should be performing on their embedded 

systems is unit testing. Unit testing is a software-development process in which the 

smallest testable parts of an application are individually and independently scrutinized 
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for proper operation.1 For firmware engineers, a unit is an individual function. As 

engineers develop their functions, they should also be developing test cases that will 

validate the functions work as expected.

A unit test should test the function by validating that the range of possible inputs to 

the function produce known and expected outputs. Unit tests should also include inputs 

that are known to be invalid to ensure that the function can handle errors appropriately. 

Figure 11-1 shows at a high level how a function would be tested.

Function Under TestInputs

Test Harness Loop

Outputs Test Report

Figure 11-1.  A test harness running unit tests

First, a test harness would be set up that could automatically run the function under 

all the input conditions that are required to test the function. Next, these inputs should 

allow the function to follow all possible branches through the function, which can be 

seen as the connected circles in the “Function Under Test” block. We will discuss how 

we can ensure we have the minimum number of test cases required in the next section. 

Finally, the function will produce an output that results in the work that it performed, 

which can then be recorded in a test report.

SOFTWARE TERMINOLOGY

Unit testing is a software-development process in which the smallest testable parts of an 

application are individually and independently scrutinized for proper operation.1

1�http://searchsoftwarequality.techtarget.com/definition/unit-testing
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Unit tests can be performed manually, but they are far more effective if they can be 

automated. Running any test case manually is a very time-consuming process. Always 

try to find a way to automate the process. I don’t enjoy spending my time testing or 

debugging, so the more automated these processes are, the better!

Embedded-software developers often struggle with determining the correct number 

of test cases that they should have in order to fully test a function. Developers can easily 

define the inputs to enter a function, but they also need to make sure that every line 

of code is executed and that every code branch is traversed. Thankfully, there is a tool 

developers can utilize that will save them from having to manually determine how many 

test cases they need to create. That tool is cyclomatic complexity.

�Taking Advantage of Cyclomatic Complexity for Unit 
Testing
Cyclomatic complexity is probably one of my favorite topics to discuss because it has 

so many benefits for embedded-software developers. The first benefit, which we have 

already discussed, is that cyclomatic complexity can be used to minimize function 

complexity. The cyclomatic complexity measurement results in a finite number that is 

assigned to a function and sets the reliability risk for bugs and testing. Table 11-1 shows a 

basic summary of the various complexity measurements and the software’s reliability risk.

Table 11-1.  Cyclomatic Complexity Effect 

on Reliability Risk2

Complexity Reliability Risk

1 – 10 A simple function, little risk

11 – 20 More complex, moderate risk

21 – 50 Complex, high risk

51+ Untestable, very high risk

2�McCabe, Thomas Jr. “Software Quality Metrics to Identify Risk.” Presentation to the Department 
of Homeland Security Software Assurance Working Group, 2008. (http://www.mccabe.com/ppt/
SoftwareQualityMetricsToIdentifyRisk.ppt#36); and Laird, Linda, and M. Carol Brennan 
(2006). Software Measurement and Estimation: A Practical Approach. Los Alamitos, CA: IEEE 
Computer Society.
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The second benefit that developers can leverage from the cyclomatic complexity 

measurement is that it provides a value for the minimum number of test cases that need 

to be defined and executed in order to fully test a function. This is because cyclomatic 

complexity measures the number of linearly independent paths through the function. 

A linearly independent path is any path through a program that introduces at least one 

new edge that is not included in any other linearly independent path.3 Let’s look at a few 

quick examples.

The first example will be a function that takes two parameters and contains a simple 

if/else statement. The code can be seen in Listing 11-1. In this example, we have two 

linearly independent paths. The first path is where var1 is equal to var2. The second 

path is if var1 and var2 are not equal. Using the M-squared RSM tool on this code, the 

cyclomatic complexity result is two, which is what we would expect. We have two linearly 

independent paths through the function.

In this example, we know that we should have two test cases to ensure that each 

linearly independent path gets tested. A developer would also want to test the possible 

values for var1 and var2 if it would impact the behavior of the function. There would be 

no point in testing every possible combination if it would not impact how the function 

behaves.

Listing 11-1.  Function with a Cyclomatic Complexity Equal to 2

int MyFunction(int var1, int var2)

{

   if(var1 == var2)

   {

      var1++;

   }

   else

   {

      var2++;

   }

}

3�http://www.ironiacorp.com/
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An interesting example is one where a developer has two if/else statements that 

occur one after the other. Each if/else statement calls a function. The code can be seen 

in Listing 11-2. If a developer were counting possible paths through the code, they would 

notice the following function combinations would be executed and count the following:

	 1)	 Foo() Bar()

	 2)	 Foo() Code()

	 3)	 Dead() Bar()

	 4)	 Dead() Code()

What is interesting is that the cyclomatic complexity measurement is three for this 

function despite there being four possible paths! Was the cyclomatic complexity wrong? 

No, it wasn’t! Cyclomatic complexity measures linearly independent paths. The last path 

is not linearly independent of the first three paths because it does not introduce any new 

nodes (program statements) that were not included in the first three paths.4 This is a 

great example of how cyclomatic complexity provides the minimum number and not the 

actual number of test cases required to test a function.

Listing 11-2.  Cyclomatic Complexity, Three Functions with Four Paths

int MyFunction(int var1, int var2)

{

   if(var1)

   {

          Foo();

   }

   else

   {

          Dead();

   }

   if(var2)

   {

          Bar();

   }

4�https://stackoverflow.com/questions/24191174/cyclomatic-complexity-1-if-statements
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   else

   {

         Code();

   }

}

There are several different tools that developers can use to measure cyclomatic 

complexity. A few that I have used in the past include the following:

•	 GMetrics5

•	 M-squared’s RSM6

•	 LDRA7

•	 Visual Studio IDE (built-in)

•	 Understand IDE (built-in)

�Standard Interface . . . Standard Tests
The nice thing about reusable software is that once unit tests are developed for the HALs 

and the APIs, the tests can also be reused. A carefully crafted HAL becomes a standard 

interface that is used from one application to the next. That standard interface will 

then have standard tests associated with it that can always be run to make sure that any 

ported or reused code still behaves the way it is expected to on the new system.

A developer can easily see the advantages of having a standard test suite that is 

executed on their drivers and their application code. These include:

•	 Writing the test once

•	 Reusing the tests for years or possibly a decade or more

•	 Quick and easy verification of changes to the software

•	 Speedy verification of new ports

•	 Decreased costs

5�http://gmetrics.sourceforge.net/gmetrics-CyclomaticComplexityMetric.html
6�https://msquaredtechnologies.com/
7�http://www.ldra.com/en/
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There are also several disadvantages that developers need to be aware of concerning 

standard tests. These concerns include:

•	 A hole in the tests will be propagated to all software that follows.

•	 The upfront time necessary to design and implement the tests

•	 The potential cost to purchase tools and implement the tests

The advantages of using standard tests obviously outweigh the disadvantages. 

Developers can easily mitigate the disadvantages by

•	 periodically reviewing the standard tests to make sure that they still 

completely cover the code;

•	 updating the tests as the underlying APIs change; and

•	 performing periodic test reviews internally and with a third party to 

make sure that nothing has been overlooked.

By doing these three things, developers can make sure that they always have 

standard tests that can be executed on their standard APIs.

�Functional Testing
Functional testing is a testing process that is used to verify that the software conforms 

with all its requirements.8 In most instances, it’s a testing method that is used to verify 

that the business needs or the end-user needs are being met. Functional testing is 

most often executed at the application level to verify that the end users’ inputs provide 

expected outputs.

Functional testing often follows black-box or white-box testing methods. In black-

box testing, the tests are created with little to no knowledge of how the system’s inner 

workings were created. The test simply knows that pressing button A should result in 

output A.

When the developer who designed the system gets involved in creating the tests, the 

testing is known as white-box testing. Since the developer has intricate knowledge of the 

inner workings of the device, they can devise tests that not only verify the inputs/outputs 

for the system but also test corner cases and specific internal actions.

8�Grenning, James (2011). Test-Driven Development for Embedded C, The Pragmatic Programmers.
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Functional testing can go beyond simply verifying the inputs and outputs 

for the system. They can also include unit testing. For embedded developers, we 

have an interesting problem in that most of our code touches hardware. Registers 

get manipulated that affect the output on a physical pin. There can be multiple 

configurations, and it can be difficult and time consuming to verify that all the 

combinations are correct and function as expected. This is where two different tools 

come into play to help embedded-systems developers: test-driven development and 

hardware in-loop testing.

�Test-Driven Development
In James Grenning’s book Test-Driven Development for Embedded C, he defines test-

driven development as “a technique for building software incrementally where no 

production code is written without first writing a failing unit test.”8,9 The idea behind 

TDD is that a developer first writes their test case, makes it fail, and then writes the code 

necessary to make the test case pass. Once the test case passes, they write another test 

case that fails, and then they write the code that resolves that test case. It then continues 

in this manner until the entire software is completed.

There are several obvious advantages to using TDD, including the following:

•	 It is verified that every test case can detect a failed state.

•	 Test cases are created incrementally for every piece of code that is 

written.

•	 Adding new code that breaks previously written code is immediately 

detected.

•	 A test harness is used that allows for easy regression testing.

When one considers the advantages of thinking through the tests first and then 

writing the code, it’s quite brilliant and counterintuitive to the way that embedded-

software developers write software, so much so that if you read the book and try it out, 

you may find yourself struggling to accept a TDD mindset.

9�https://www.techopedia.com/definition/19509/functional-testing
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TDD is not without its own headaches and issues. There are several disadvantages to 

TDD that can affect embedded-software developers, such as the following:

•	 Needing to create mocks to simulate hardware accesses

•	 Setting up the development environment is time-consuming and 

tricky

•	 Adopting the mindset and truly following TDD is difficult

•	 The process can feel very time-consuming

Despite these disadvantages, developers may still want to investigate TDD and 

determine which pieces could work best for their reusable firmware.

�Hardware In-Loop Testing
Hardware in-loop (HIL) testing runs the test case code on the target microcontroller 

rather than using a mocked software layer to act as the hardware. HIL testing can 

be extremely useful for verifying that hardware accesses from a HAL are working 

as expected and even for testing that all outputs from the system work as expected. 

Figure 11-2 shows an example of what a HIL setup might look like.

Host PC

Debugger
Microcontroller

Logic
Analyzer 

DAC / ADC
Product Specific

Hardware 

Device Under Test

Comms

Figure 11-2.  Hardware in-loop testing
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HIL testing can contain several different components. First, there is the device under 

test, which is commonly referred to as the DUT. The DUT will have information that it is 

critical to access in order to verify the system is working, such as the following:

•	 Microcontroller register values

•	 Pin I/O states

•	 Communication channels

•	 Product relates signals from sensors, actuators, etc.

Now, a developer could go through and manually monitor these signals, but that 

would be a very time-consuming process. Instead, a developer can build out their HIL 

test harness to include tools that can automatically sample desired states.

This brings us to our second component, the debugger. The debugger is used by the 

test controller to load applications and test code onto the target microcontroller, and 

also to control those tests through the debugger communications port. Most modern 

debuggers act as a virtual communication port, and with minimal software a developer 

can create a test command-control channel to manage the microcontroller. The 

controller can request telemetry, register values, and even monitor the software trace 

and event history.

Next, a developer will normally have a communication channel via which to talk with 

the product. For example, if the product is an automotive product, there may be CAN 

messages that the product responds to that need to be tested. Another example would be a 

device that has a COMM port. Whatever the communication interface is, there needs to be a 

tool that can convert that communication to a COMM port that the test scripts can control.

Another useful tool to include in the HIL, and one that is very useful for verifying the 

HAL and configuration tables, is a logic analyzer. Each GPIO pin on the microcontroller 

can be connected to the logic analyzer and then sampled at either a predetermined 

rate or when events occur in the system. For low–pin count parts, this is straightforward 

and doesn’t require expensive hardware. However, if the microcontroller being used 

has a hundred pins or more, logic-analyzer hardware could be expensive. The same 

processor’s development kit, which probably has a header for every pin anyway, can be 

used as a logic analyzer with a little bit of software.

Developers may also find that their system requires an analog or digital input or that 

their system outputs an analog or digital signal. In these cases, using an ADC or DAC will 

give the test harness access to these signals so that they can be recorded while executing 

the test cases.
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Finally, this brings us to the host computer that runs the test suite and must monitor 

and control the entire testing process. There are several different test harnesses from 

companies such as LDRA, but it is also possible for developers to write their own Python 

scripts to test and validate their system. In many cases, the direction a team will go will 

depend upon several factors, such as the following:

•	 Available budget

•	 Available time

•	 Team members available for the project

The one thing that I’ve tried to convey throughout this book is that reusable software 

saves time and money in the long run. It often does require more time and budget up 

front, but once everything is in place, the speed at which a team can move and the 

money that can be saved pays for itself multiple times over.

�Regression Testing
Developers who are creating reusable software absolutely need to make sure that 

they can perform regression tests in a timely and automated manner. According to 

Wikipedia, regression testing is “a type of software testing which verifies that software 

which was previously developed and tested still performs the same way after it was 

changed.”10 In summary, regression testing helps a developer ensure that when they 

modify their software by fixing bugs, adding new features, or porting it to a new target 

microcontroller, they can verify that the software behaves as expected without any new 

bugs being created. If bugs have been created, the regression tests would catch them and 

developers could deal with them.

The idea behind regression testing is that there is a test set that exists that can 

be rerun on the system periodically to ensure that all the tests are still able to pass. If 

regression testing is run often, any tests that fail should be easily traceable to the code 

that changed and is causing the issue.

10�https://en.wikipedia.org/wiki/Regression_testing
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�Automating Tests
Any team or developer that is creating reusable software should be creating automated 

tests. Even the simplest embedded system could require a hundred or more test cases to 

ensure that the software behaves as expected. Attempting to manually run through these 

tests will consume a lot of time and could be prone to errors. Therefore, automating test 

cases is really the best solution for developers.

There are several different methods that teams can use to create automated test 

cases. The most popular that I have encountered include

•	 using a C/C++ test harness; and

•	 creating a Python-based test harness.

There are several example C/C++ test harnesses that developers can leverage, such 

as Unity or Cpputest. Both C/C++ test harnesses are open source and can be found by 

searching for them in your favorite web browser. The advantages to using a C/C++ test 

harness is that

•	 they are open source;

•	 developers already know C/C++; and

•	 they can be used to create automated tests.

There are several disadvantages as well, including the following:

•	 Being open source, there is limited support to get them up and 

running.

•	 I have found that they are difficult to set up initially.

Python test harnesses can be very interesting to developers as an alternative to a  

C/C++ harness. I have found them to be more flexible for system-level testing, similar to 

what we discussed in the section on in-line hardware testing. Python is an easy-to-learn 

scripting language that is very powerful. It also includes libraries specifically designed to 

perform testing.

The direction that any team chooses to go will be highly dependent on their skillsets 

and their end requirements. It may also depend on when their products are due and how 

much time and budget they have allocated for testing. One thing is certain though; if you 

are planning to create reusable firmware, you need to have automated tests to ensure the 

software continues to behave as you expect it to.
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�Using Trace to Verify Application Software
A new testing tool that is now available to embedded-software developers that wasn’t 

available just a few years ago but can be very powerful is application tracing. Application 

tracing allows a developer to record events that are occurring in their system and offload 

the event and the timing through the debugger onto a host machine. Event data can 

be logged by streaming continuously or as a one-shot. An example setup for how a 

developer can trace their application can be found in Figure 11-3.

Host PC

Debugger

Target MCU
(Running Event Recording Library)

Visualization Software

Figure 11-3.  Tracing application data block diagram

In the setup, a developer runs a small and efficient event-recording library that can 

communicate with the debugging probe to store the event data on a host PC. The sample 

rate for the event data will depend on the throughput to the PC along with the buffer 

size given to the event-recording library. The larger the buffer, the more event data that 

can be stored locally before it needs to be transmitted upstream. Even on resource-

constrained microcontrollers, the event-tracing library uses no more than 1 percent of 

the CPU and usually has a few kilobytes of RAM allocated to it.

Once a developer has set up tracing and recorded a trace to their PC, they can use 

their capture software to get statistical information about the system. This information 

can be viewed in many ways, from simple tables and graphs to task-tracing diagrams. An 

example trace that monitored a system that had three tasks to control LEDs can be seen 

in Figure 11-4. This table shows useful information, such as CPU usage and minimum, 

maximum, and average execution times, along with the task periodicity. A developer can 

easily use this information to monitor and track not only changes to their application but 

also whether their code is behaving as expected after porting it to a new microcontroller 

or product.
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Another interesting feature that developers can use to test and verify their software is 

a visual inspection of the trace data. Figure 11-5 shows an example visualization where 

a developer has discovered that there is a deadlock in their application code. The active 

task is shown as a solid lifeline, while the task waiting to execute is shown as a hashed 

line. The highest-priority task is on the right-hand side. Examining the trace reveals 

when different events occur, such as:

•	 Task delays

•	 Context switches

•	 Giving and taking objects such as semaphores

•	 Current status of all tasks

This information can be used to dramatically improve the verification process 

involved with reusable firmware.

Figure 11-4.  Trace data demonstrating task statistics
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�A Modern Example: The Renesas Synergy™ 
Platform
So far in this chapter we have examined quite a few different topics associated with 

testing portable firmware. Before we conclude, I want to walk you through a real-world 

example of how a microcontroller supplier is taking their software to the next level by 

providing not just example code, but also certified, portable firmware that works on their 

entire series of microcontrollers. This is a real-world example of how Renesas tests the 

software that it provides with its Synergy microcontrollers.

The Renesas Synergy Platform provides a wide range of microcontrollers, from 

low-power microcontrollers with an ARM Cortex-M0+ cores all the way through to 

high-performance ARM Cortex-M4 cores. Rather than expecting its customers to write 

their own drivers, middleware, and application code, Renesas has built into its platform 

an entire software framework that provides these components in a configurable and 

Figure 11-5.  Manually inspecting event data that reveals a deadlock
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portable manner across the entire microcontroller family! What is so surprising is that 

Renesas doesn’t just supply example code but has also gone through a rigorous software-

development cycle that has strict quality-assurance requirements that include many of 

the testing methodologies that we have been discussing in this chapter.

For example, Figure 11-6 shows the general process that Renesas uses every single 

night to test that its framework works as expected!

Figure 11-6.  Renesas Synergy™ Platform continuous integration test server11

The reader can easily see that the test setup is a combination of running tests both on 

the software alone and on the hardware. By quickly surveying the diagram, a developer 

can see that their software framework is the following:

•	 Statically analyzed

•	 Verified against best practices and coding standards

•	 Compiled under multiple toolchains

11�Renesas Synergy Software Quality Handbook, page 17.
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•	 Tested on target hardware through the following:

•	 Unit tests

•	 Functional tests

•	 Regression tests

•	 Tested in a software harness that performs the following:

•	 Unit tests

•	 Functional tests

•	 Regression tests

•	 Integration tests

•	 Performance tests

The way that Renesas has built and tested its reusable firmware is a perfect example 

of how to apply many of the concepts that we have been discussing throughout this book 

and in some circumstances going well beyond those topics. The techniques that it is 

applying are ones that every developer interested in reusable code should be leveraging, 

examining, and using as a case study for how they build and design their own embedded 

systems.

�Going Further
Testing is critical in any embedded system but especially for developers who are 

planning to reuse their software. This chapter has covered some basic fundamentals, but 

once again, an entire book could be spent on the topic. The following are some ideas on 

how you can put this chapter to use, along with where you can go to learn more:

•	 Review McCabe’s12 white paper on using cyclomatic complexity for 

testing, located at http://www.mccabe.com/pdf/mccabe-nist235r.

pdf.

•	 Identify a cyclomatic complexity calculator and run it on your own 

code base.

12�http://www.mccabe.com/pdf/mccabe-nist235r.pdf
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•	 Reduce the complexity of functions with a value greater than 10 as it 

makes sense.

•	 Review each function and identify the test cases that need to be run 

in order to cover all paths, inputs, and outputs.

•	 Select a test harness and implement the tests for each function.

•	 Record how long it takes to implement the tests initially. The next 

time you port your code, record and compare the development times.

•	 Invest in a copy of James Grenning’s book Test-Driven Development 

for Embedded C. The book has great content, but be warned the 

examples are a bit strenuous to set up and complete.

•	 Review your development kit or product under development and list 

out what would be necessary to perform hardware in-loop testing.

•	 Download and set up Segger’s SystemView trace tool along with 

Percepio’s Tracealyzer. Become familiar with how to set up, 

automate, and use these trace tools.

•	 Review the Renesas Synergy™ Platform along with the Renesas 

Synergy™ Quality Handbook.
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CHAPTER 12

A Practical Approach 
to Code Reuse

“Make everything as simple as possible but not simpler.”

—Albert Einstein

�Being Practical in an Unpractical Environment
Every software developer knows that there are right and wrong ways to develop software 

as well as best practices that should be followed. The problem that many teams and 

individual developers face is that they find themselves in an environment where doing 

things the right way, whether it is through code reuse, automated tests, or any other 

technique that we have been discussing, is just not possible. Developers could find 

themselves in an environment where

•	 management doesn’t understand software development and has 

unrealistic expectations;

•	 development timelines are short or impossible and the only option is 

to crank out code;

•	 budgets and resources are scarce but the end results still need to be 

delivered;

•	 upper management doesn’t care about quality, reuse, or even 

accuracy as long as sales remain strong; and

•	 any situation where developers are pressured in such a way that they 

don’t develop software the way they know they should.
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It is important to remember that even if the environment that is being worked in 

is unpractical, developers can still work in a practical manner that gets the job done 

the right way. Attempting to cut corners by skipping design or documentation or being 

stingy on testing will only increase the costs and delay the project.

Early in my career. I worked for several start-ups where chaos ruled the day. 

Management was always jumping from one fire to the next, and getting anything 

consistent accomplished was impossible. The development team was pulled from 

one direction to the next at least daily and sometimes more often. Despite this rough 

environment, I was able to adapt and create quality, reusable firmware by taking a 

practical approach that implemented reuse in phases and through carefully planned 

baby steps.

�Phases and Baby Steps
Embedded-software developers start their careers with very little knowledge of how to 

properly develop software. They start out learning language semantics and how to create 

a basic program. A developer can spend a few years learning the intricacies of how to 

properly interact with low-level hardware and developing the skills necessary to properly 

debug an embedded system. Embedded-software developers learn new skills and gain 

new insights and understanding over time and in phases. They don’t just start with all 

the knowledge they need to be successful.

Adapting a developer’s or a team’s software-development practices and processes 

to improve robustness, be more reusable and portable, and achieve many other positive 

attributes that we have been discussing will also not happen overnight. A team could 

decide that going forward everything will be reusable by developing a HAL, APIs, and so 

on up front, but there are several reasons this may not be possible, such as the following:

•	 Limited budget

•	 Limited development resources

•	 Delivery timelines

•	 Lack of approval from management

•	 Chaotic business wildfires

So, what can a developer do?
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First, it is important to recognize that reusability and portability in the long run 

will help decrease the total cost of ownership. Second, given how chaotic firmware 

development can be when developers don’t follow a strict process or best practices or 

continually jump through management hoops, the chances are that building some reuse 

into the code up front will still be cheaper and faster in the short term. The trick is to 

not go overboard and overdesign the reuse, but rather to identify where the maximum 

benefit will be and aim to achieve it.

When time is short or the pressure is on, take a first pass at creating reusable 

firmware. Design a HAL with the expectation that it will need to be updated in future 

releases. Create configuration tables so that drivers and application modules are easily 

configurable rather than hard coded. Add enough flexibility so that at a later time the 

software can be improved without bringing down a house of cards.

We have discussed many times in this book that a HAL design, for example, will 

require multiple iterations to get right. Implementing code reuse will also require several 

iterations and phases before it is completely in place and being utilized successfully. 

In general, developers can follow a very simple process that over time will allow them 

to implement the practices that we have been discussing throughout this book. This 

process contains five steps:

	 1)	 Identify the highest-impact result.

	 2)	 Evaluate what is currently being done and what needs to be done.

	 3)	 Define a roadmap to get from where you currently are to the 

desired result.

	 4)	 Execute the roadmap and improve the software, process, or 

practice.

	 5)	 Assess the results.

The entire process flow can be seen in Figure 12-1.
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This process can follow a very formalized and strict implementation, or it can be 

done by a single programmer who simply realizes that things need to change. The 

best results are achieved by focusing on one to three improvements until the desired 

outcome has been achieved. Let’s discuss in more detail how the reader should go about 

following this simple process and how they can get the most from it. 

�Identifying Desired Results and Outcomes
There are many possible results and outcomes that a development team may be looking 

for when they start engaging in improvements in order to develop reusable firmware. 

Embedded-systems developers may be looking to

•	 improve code readability;

•	 decrease number of bugs; and

•	 improve reuse and portability.

Identify

Evaluate

DefineExecute

Assess

Desired Results and Outcomes

Where are we?

Roadmap

Implement

Where are we
now? 

Figure 12-1.  Software practice omprovement
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From a business perspective, management and shareholders are going to be looking at

•	 decreasing time to market;

•	 decreasing development costs; and

•	 increasing product quality (at least I hope so).

On the surface, these desired results might not look like they overlap at all, but in 

many cases the things that a developer wants to improve will have an impact on the 

business results. In some situations, though, getting management to see and understand 

the benefits can be difficult, and sometimes vice versa. I’ve worked with clients where 

management saw the benefits and were failing to get the developers to buy in on how 

important reuse and portability are.

The trick is to identify desired engineering results that also mesh with the results 

management is looking for. If developers want to decrease bugs and rewrite modules, 

while management is looking to decrease costs, the two are going to clash. Developers 

need to understand a business need or result first and then translate what can be done 

at the engineering level to get that result while simultaneously achieving their own 

desired goals. Sometimes this requires that the individual developer get a read on their 

management team and forge forward on their own without support in the hope that the 

end results justify the means.

When all is said and done, there are three primary outcomes or results that a 

business is looking to get out of reusable firmware. In many cases, a developer should 

justify their activities to see if their reusable code will improve the odds of achieving their 

goals. Always choose the low-hanging fruit that will make the biggest impact with the 

smallest amount of effort. Let’s examine these outcomes and a few engineering activities 

that go with them.

�Desired Results: Decreasing Time to Market
A major result that many managers and business owners would love to get from their 

development teams is decreased time to market. Getting a product to market before 

the competition can be a major advantage for a business, especially if a product is new. 

Launching a product sooner can

•	 provide a revenue stream to fund the company;

•	 provide a success for the team to celebrate;
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•	 beat competitors to market; and

•	 result in decrease costs.

Projects that run their full course—or worse, go over schedule—can cost 

dramatically more, sometimes even to the point that the project is canceled or the 

business goes bust. This is a primary reason why there is such a big push to decrease 

development times. We live in a society that is in a hurry, and unless we work for Apple 

we want to be to market first.

There are several reuse options that developers can employ and suggest in order to 

decrease their time to market. Several ideas that we have discussed throughout this book 

are as follows:

•	 Use a hardware abstraction layer (HALs)

•	 Develop application programming interfaces (APIs)

•	 Leverage existing components and frameworks

•	 Follow best practices for portable firmware

Implementing all or some of these activities can decrease time to market. 

Sometimes, the results can be obvious, especially if they are tracked through metrics. 

Other times, the results may be subtle.

�Desired Results: Decreasing Development Costs
Decreasing development costs may seem like something that a developer wouldn’t 

necessarily care about. They are paid to design a successful product, not minimize costs. 

However, the way I always view development costs is that the lower the costs are, the 

more profitable the company is. The more profitable the company is, the more willing 

they will be to provide their hard-working employees with bonuses, pay raises, and 

better benefits. Perhaps that is just my optimistic personality showing through, but there 

are other benefits that developers may not think about as well.

Decreasing development costs could be the difference between failing and being 

able to successfully launch a new product, company, or widget that could benefit 

millions or even billions of people. Many start-ups are strapped for cash, and if they can’t 

find a way to decrease their development costs or keep them in check, there is no hope 

for their survival.
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There are several options available to developers that can help them decrease their 

development costs. Several ideas that we have discussed throughout this book are as 

follows:

•	 Use a hardware abstraction layer (HALs)

•	 Develop application programming interfaces (APIs)

•	 Leverage existing components and frameworks

•	 Use an automated testing framework

•	 Follow best practices for analyzing software for bugs

•	 License commercial off-the shelf software

There are many different things that can be done to decrease costs, such as buying a 

professional debugger and good development tools. Spending money on the right tools 

for the job can make a huge impact on total cost.

�Desired Results: Increased Quality
Developing a quality product is a great way for a business and a development team to set 

themselves apart from the competition. There is such a push to get to market fast that in 

many circumstances quality suffers. A product gets to market and is buggy or has terrible 

performance, which then turns off users and requires marketing to perform damage 

control. Quality is one of the elements that is critical to every embedded system and 

sadly can be a major product differentiator.

There are several different strategies that developers can follow to increase their 

firmware quality, all of which would take an entire book to discuss. However, from what 

we have discussed in this book, several activities that developers can engage in to ensure 

their portable and reusable firmware is of high quality are follows:

•	 Adopt coding standards

•	 Utilize automated tests

•	 Perform static and dynamic code analysis

•	 Perform code reviews

•	 Follow industry best practices

•	 Implement a robust software development lifecycle plan
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Implementing these will help to ensure that, over time, your firmware becomes high 

quality.

�Evaluating Where You Are
Once a developer has determined the results or the low-hanging fruit that they want to 

go after first, they need to figure out how they are going to achieve that outcome. Before 

going too far, it’s a good idea to quickly determine the status of the code. For example, 

if a developer decides that the code base needs to have a HAL, they should survey the 

software to determine whether it currently contains a HAL, how evolved it is if so, and 

whether it could be adapted or improved upon.

There are many ways a developer can go about evaluating the current status. A 

developer may even want to create a spider diagram similar to that in Figure 1-14 from 

Chapter 1 or simply rank the current status on a scale from one to ten, one being that 

the feature is not evolved and ten being it is fully evolved. With some numeric value 

assigned, a developer can then decide what value the ranking should be and what it will 

take to get there.

Getting a stake in the ground for where you currently are and where you need to get 

to will help determine the roadmap, or the plan, that will be put into place to make the 

firmware more reusable.

�Defining How to Get There
Being practical about reusable firmware really means that a developer doesn’t over-

design and that they build in enough reuse for the job at hand. A formal process might be 

the practical way to go, but in many instances just adapting on the fly might be the more 

practical approach. Whether a formal roadmap and plan are defined or not, developers 

should still at least identify a few metrics to monitor as part of their plan so that they can 

measure the improvements and the progress being made toward the goal.

I’ve worked with companies that are so bogged down in process and metric 

gathering that a snail is moving at a faster pace than they are. In many cases, developers 

need to balance the spectrum of no process to too much process. There is a safe balance 

somewhere in the middle that allows developers to work very rapidly. That said, as 

you move toward practical code reuse, you should still identify at least a few metrics by 

which to track your progress.
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�Getting the Most from Metrics
Metrics shouldn’t be something that are tracked just for the sake of tracking metrics.  

A good metric will have several characteristics, including the following:

•	 Easily measurable

•	 Automatically trackable

•	 Meaningful

Let’s be honest—some of these are obvious. The key is to find metrics that adhere 

to all three of these characteristics. If a developer has to occasionally stop development 

when they are under pressure to document and record a metric, they aren’t going to do 

it. If they must stop at the end of the day to record a metric when they want to get home 

and have a beer, they aren’t going to record it.

In order to get anything from a metric, it has to be easy to measure, automatically 

trackable, and meaningful. If it doesn’t meet these criteria, then the data will end up with 

holes that will cloud the result and make the metric meaningless. Let’s examine a few 

metrics that developers should be interested in tracking and for which it is possible to do 

so automatically.

�Metrics Worth Tracking
Everybody loves metrics! Right? In general, while I believe engineers do like to have data 

that they can use to track progress, most engineers find metric tracking to be a pain. 

The development cycle is busy with engineers being pulled in every direction, yet they 

are expected to be disciplined and stop occasionally to take measurements about the 

development cycle. This can be a tough thing to do but is a necessary evil.

I strongly believe in tracking metrics, but I believe development teams need to take 

a minimalistic approach to metrics. Any metric that is used needs to have meaning and 

value if it is to serve any purpose to a team. Having a metric just to have it is not a good 

use of engineers’ or managers’ time. So, what metrics should developers be tracking if 

they want to understand how reusable firmware is affecting their development cycle?

The primary thesis behind reusable firmware is that it will decrease costs and time 

to market. The metrics that are selected should allow a team to check whether they 

are decreasing development efforts. There are a million different metrics that could be 

tracked, but there are just a handful that I find to be the most useful. These metrics all 

come back to tracking the development for each component in the software.
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Each component should track several different metrics, which include the following:

•	 Maximum stack size

•	 Real-time function execution

•	 Code size

•	 RAM usage

•	 Cyclomatic complexity

•	 Development time

That’s it! One might want to track the time spent debugging because so much time 

is spent debugging. Identifying and using proper debug techniques could dramatically 

improve development times and costs. That is beyond this book’s goal, however, so let’s 

examine a few of these metrics and understand why we should be tracking them.

First, development time for a component is obvious. We need to understand how 

long it takes us to develop the component and then how long it takes during each port to 

get the component up and running. Tracking the time spent on a component from one 

project to the next can also give a developer a sense of how much time is saved through 

reuse. For example, the first time I created an SPI peripheral HAL and implementation 

design pattern it took 40 development hours. The next time I used the SPI HAL and 

design pattern, it took only eight hours to port and fully test the driver. Before creating a 

reusable module, it was taking on average 32 hours to implement and test the drivers.

For an extra eight hours of work, I could then save 24 hours of work on every project 

that followed! That was just for that one component. When you consider that there 

are at least a dozen components in most projects, it’s easy to not just see but to show 

management and clients the time savings resulting from reusing software. The data 

is there to justify further improvement efforts, but also can be used as a baseline for 

estimating future project timelines.

Second, developers should be tracking each component’s code and RAM usage. As 

we discussed earlier in this book, reusable components can potentially use more RAM 

and code space. That means that when we start looking at the microcontrollers we are 

using, there may be a trade-off where we need to use a more expensive microcontroller 

to fit all the code. While we may be saving money and time through reuse, we might be 

paying back the money portion in more expensive hardware. This doesn’t have to be the 

case, but it’s a good metric to track to ensure that the code base doesn’t get out of control 

and to allow developers to easily select the microcontroller they need for a given project.
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Tracking these metrics doesn’t have to be a big deal. A script can easily be written 

that parses the map-file output from the compiler to calculate the code and RAM usage 

and log it to a database or print it in a report. For tracking development time, developers 

could use online tools such as Trac, but they could also just as easily use a spreadsheet. 

Figure 12-2 shows an example of how a developer can create a simple activity list for a 

project containing all the different common software components and then record the 

development time for each. The data is fake, but it does provide the reader with a general 

idea of how, if they record this data, they can easily start to get minimum, maximum, and 

average development hours for different activities.

Figure 12-2 shows just a handful of low-level microcontroller activities, but the list 

can be fully expanded to include BSP and application components as well. A complete 

list can be found with the download materials for this book. As a team builds more 

products, they will very quickly be able to not only improve their estimation skills but 

also calculate how taking the time up front to do things right can impact their project.

Figure 12-2.  Component-development metric tracking
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�Assess the Results
Once the implementation is under way, developers can continually monitor their 

progress and assess where they are at in relation to getting the desired results. Having 

good metrics is key to being able to assess the results appropriately. Once the results 

have been achieved, developers can move back to the Identify step to determine what 

their next focus point will be to improve the reusability of their firmware.

Before we conclude this chapter and the book, I would like to point out several 

additional best practices that developers should keep their eyes out for in order to ensure 

that they can develop reusable firmware.

�Recognizing Design Patterns
A core point in this book that we have been tip-toeing around is that embedded-software 

developers should not be reinventing the wheel. When it comes to interacting with 

hardware or software components, pretty much everything has been done before. The 

C programming language is almost 50 years old! Microcontrollers have been around 

since 1970. Someone has already figured out the best way to interact with an SPI bus, a 

GPIO, a UART. Successful embedded-software developers don’t reinvent the wheel. They 

recognize design patterns in the problems that they are trying to solve and then use and 

adapt those design patterns to the problem at hand.

My biggest complaint when I was an undergraduate taking computer science classes 

was that our professors wouldn’t teach us about design patterns, not even how to 

recognize them, but instead would force us to reinvent and create from scratch libraries 

and solutions that already existed. We spent painstaking time inventing and debugging 

algorithms for which we could have adapted an existing solution. The biggest lesson I 

took away from these encounters was that for a Phd, it’s all about the journey, and there 

is no real hurry to get to the solution. For an engineer, it’s about finding the simplest and 

quickest solution.

The key to being a successful embedded-software engineer is to recognize design 

patterns and implement them where appropriate. For example, when using a UART to 

receive messages from an external source, a developer is going to need a circular buffer. 

Don’t take three days to design a new circular buffer (I see engineers do this all the time); 

use one of the thousands of solutions that have already been implemented and move on 

to other design problems that truly deserve your attention.
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There are several factors that developers should watch for in order to identify a 

design pattern. They can all be summed up in just a single point:

•	 If I’ve seen this before or think I may need it again, then a design 

pattern either already exists or I should create a new one for future use.

It’s that simple. It’s not rocket science, and believe me, I know!

There are several common design patterns that the reader can find in almost every 

embedded system. These patterns include:

•	 Memory-mapping drivers

•	 Calculating checksums

•	 Command parsers and interpreters

•	 Error handling

•	 Program updating (bootloaders)

•	 Calibration

•	 Circular buffers

•	 and more

The list could go on and on. As you develop your software, ask yourself if this is a 

problem that someone else may have encountered in the past, or that you have, and, if 

so, do a quick search or browse your own code for the solution. It can save considerable 

time and effort. Once a developer starts to recognize these design patterns, they can start 

creating their own design-pattern templates and checklists.

�Creating Templates and Checklists
Over the years, as I have recognized different design patterns in the software that 

I’ve written, I have created a template that could be used in the future to implement 

that pattern faster. The template could be nothing more than a high-level software 

diagram showing how to implement a solution, or it could be an abstracted low-level 

implementation. For example, one of the first design patterns I ever implemented was 
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for interacting with external memory devices. We discussed a few chapters back that 

every memory device follows JEDEC standards, which makes writing, reading, and 

interacting with those devices the same no matter who the manufacturer is. Interacting 

with those devices becomes a design pattern, and once a developer creates that pattern 

once, they can use it every time that problem presents itself.

Another template example is the Doxygen templates that are used to document 

code. Having a consistent method for documenting code is crucial. It needs to be done 

over and over again for every project. Rather than creating a new way to document 

software in every project, I created a template that I could easily use on each and every 

project. Over time, I do update and adjust those templates, but the base pattern is there, 

and it decreases the effort tremendously.

Templates are a great way to speed up software development and prevent developers 

from repeating work that has already done.

Another tool that I have found to be indispensable is using checklists. Checklists 

can be used to manage everything from creating a new project and checking in a project 

to revision control and final reviews for releasing software. A checklist is a great way to 

take a complex procedure, or even one that is not done very often, and ensure that it is 

repeatable.

For example, I have a project-setup checklist that I use at the start of every project. 

The checklist doesn’t go into low-level details but has the high-level points to remind me 

what I should set up and configure in order to get the project up and running the fastest. 

For example, my project-setup checklist is set up to follow several different phases, as 

shown in Figure 12-3.
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Figure 12-3.  Project-startup checklist1

1�https://www.beningo.com/tools-embedded-software-start-up-checklist/
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As the reader can tell from the checklist, there is a lot that is done before a single line 

of code is ever written for the project. Many of these items would be easily overlooked 

if there were pressure on to start banging out code as quickly as possible. The checklist 

ensures that proper procedures are followed that will maximize the project’s chances for 

success.

Every firmware project that I work on starts with this checklist. If you examine the 

checklist carefully, you’ll also notice that there are entries that remind me to bring 

templates into the project. For example, there is mention of the Doxygen templates, 

along with HALs and APIs. At that bullet point, if the project that is being developed 

requires a communication protocol, circular buffer, command parser, and so forth, 

those template components would be added to the code base. By the time the checklist 

is completed, there is a nearly completed skeleton for the software along with the 

implementation for any common design patterns.

In many instances, in just a day or so a base system can be brought online that 

if developed from scratch would easily take a month or more. This is the power that 

reusability and portability bring to the table.

�Version Control Is Your Best Friend
Version-control systems are a great way to share source code between developers. 

They provide the ability for multiple people to simultaneously work on the same code 

base without the danger of sending files back and forth constantly. Make a mistake 

while developing and rest assured that the simple press of a button can roll back the 

code to a fresh square one. History has shown that working without a version-control 

system is a disaster waiting to happen! Version-control systems are an essential 

development tool, and there are several tips developers should follow in order to get 

the most from them.
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�Tip #1: Commit Frequently
Embedded software at times takes on a life of its own and tends to have a temperamental 

attitude. A developer makes a few minor changes and the entire system destabilizes into 

frenzy. The developer has no fear and reverses the few changes he made and voila! The 

system is still broken. Without a version-control system, the developer scratches their 

head in panic and tries to understand what change they made that they don’t remember 

from five minutes ago! The engineer using version control, on the other hand, performs 

a right click and simply reverts to the previous working version of the code and now 

cautiously moves forward. But what if the developer had gone days without committing 

his code? Days’ worth of effort could be lost, which is why developers using version 

control should commit frequently! Complete a feature and commit. Get a partial feature 

working, commit. This will not only save the engineer time when things go wrong but 

will also leave a nice trail in the version-control system of the changes that were made.

�Tip #2: Fill in the commit log
It is great if an engineer commits their code changes frequently; however, it can 

prove to be a futile effort if sufficient information is not provided in the change log. 

Most version-control tools will allow comments to be made at the time the code is 

committed. Fill in the log with helpful and useful information! Don’t leave it blank or 

put cryptic information here. In the future, a bug may get introduced into the code, and 

as the developer backtracks the versions, it will be essential that the log contain useful 

information on what changed. It takes only a few moments and will save many hours of 

frustration and headaches! Try to come up with a common log format that needs to be 

filled in before each commit.
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�Tip #3: Don’t forget to add files to the VCS
Version-control systems have been known to play a trick or two on a developer. The 

biggest is when a developer thinks that he is committing code when he actually isn’t! 

How can this happen? Most systems require that when you create a file you add it to 

revision control. If this isn’t done, then the system will happily commit and ignore those 

files that haven’t been added. So, don’t forget to add files to the VCS!

�Tip #4: Define a commit process
It is really easy to forget to add files to revision control, properly log changes, and a 

variety of other tasks associated with version control systems. The best thing that can be 

done is to create a process for each of the different tasks that need to be performed. For 

example, create a commit process. It would look something like the following:

	 1)	 Update version log within the code base.

	 2)	 Copy the changes.

	 3)	 Add files to the VCS.

	 4)	 Begin the commit process.

	 5)	 Paste the change log into the commit comments and add any 

additional relevant comments.

	 6)	 Complete the commit.

�Tip #5: Lock modules that are in process
There are times when multiple developers are working on a project and might need to 

modify the same module. Version-control systems often have a feature that allows the 

programmer to lock a particular module for editing. This prevents another programmer 

from modifying the file at the same time and thus helps to prevent conflicts within the 

code base.
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�Tip #6: Utilize the code-comparison tools
There will inevitably come a time when a bug creeps into the code unnoticed. At some 

point it will be discovered, and then the question will be asked, “What changed?” The 

only way to know for sure is to compare different revision levels of the code. This could 

be a painful process if it weren’t for the fact that most version-control systems include 

a difference tool. This tool allows a side-by-side comparison of files within the code 

across different versions of the code. These alterations are highlighted and can then be 

examined as the potential source of the bug.

�Tip #7: Don’t fear merging code branches
The concept of branching the code into a separate version, making changes, and 

then later merging it back into the main version trunk can be scary! What happens if 

something goes wrong? What if it isn’t merged properly and the main branch becomes 

corrupted? Beginners will often fear merging branches, but do not be concerned! This is 

a common occurrence, especially when multiple developers are involved in the project. 

If a mistake is made it is easy to go back a version and restart! The best way to get over 

this fear is to practice.

�What Is the Cost to Do Nothing?
An important question that every developer and every team should ask themselves 

before beginning any improvement to their embedded-software processes or  

code base is:

What is the cost to do nothing?

I come across so many developers, teams, and clients who will look at the $2,000 

price tag on a compiler, computer, or development tool and instantly say it costs too 

much. They never stop for a moment to ask what the cost is if they don’t purchase the 

tool. Purchasing a $2,000 tool might save the company $10,000 or even $20,000 over the 

lifetime of that tool. The problem is that most managers and development teams are 

short-sighted in their thinking, looking only at what is right in front of them and not what 

is in the best interest of the company in the long-term.
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When I first started my business, I had worked at several large and small companies 

and was absolutely set on making sure that:

	 1)	 I would use the right tools for the job no matter the cost.

	 2)	 I would always evaluate what is in the long-term best interest for 

my clients.

In several instances, I purchased tools that cost more than $10,000 to the mutual 

benefit of both myself and my clients. Each client that I served saved the $10,000 on the 

tools, which they were then able to put back into their own development cycles. In the 

grand scheme of things, the $10,000 was nothing to those companies, but to those clients 

it was a huge gesture.

When developers are evaluating whether to start using reusable firmware in their 

own development cycles, they need to ask themselves what the short-term and long-

term costs will be if they do nothing. It may cost the company $10,000, $20,000, or 

maybe even $50,000 up front to create firmware that is reusable, or those amounts over 

several years as reuse is increased in iterations. But what is the return on investment 

over one, two, five, and ten years? It might be that with an upfront investment of $10,000 

a company can save $100,000 in the next two years. Perhaps future products can beat 

the competition to market or improve quality to a point that customers prefer their 

product.

I see so many teams that make short-term decisions without considering the long-

term perspective. Unfortunately, I see many of these teams choke, stumble, and, in some 

cases, even go out of business. Others are able to just barely survive and end up in a mad 

dash to implement reusability and best practices that they should have been using all 

along.

Don’t get caught up in short-term thinking. Keep this question on your mind and 

ask it at every crossroads. The costliest mistakes that I’ve seen in the industry and in life 

happen not when people jump into a situation, but rather when they do nothing and 

hope for the best.
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�Final Thoughts
When looking back over my short career so far and examining what has made the 

greatest impact on my clients’ products and software, I can sum it up in one word: reuse. 

It’s a simple idea to reuse embedded software. Reuse has been going on for decades in 

the PC world. Yet, firmware developers have always opted for writing software in a one-

off fashion, ignoring reuse and opting to just get it done and deal with the fires that are 

burning today.

As we progress through the coming decades, it is absolutely clear in my mind 

that the teams that will be the most successful are the teams that utilize reuse to the 

furthest extent. Teams that leverage HALs, APIs, microcontroller platforms, and even 

automatically generated code will develop software far faster than today’s standards. 

Teams that reuse code can focus on their product’s key features, the differentiators that 

set it apart from the competition.

Embedded-software developers have always been experts in the microcontroller, 

the low-level bits and bytes. That is going to change over the coming decades. More 

and more developers are going to be experts in HALs and APIs and have little to no 

knowledge about the hardware. As we move to 32-bit microcontrollers, the complexity 

will become so high that the only way we can possibly expect to get a product to market 

in a year or less will be to reuse what we have already created and leverage existing code.

Microcontroller manufacturers, as experts in their own hardware, are starting 

to provide frameworks and HALs for developers to use. We will see the hardware 

abstracted, but even when that does happen, teams that utilize reusable concepts will 

still have an edge over teams that are just getting things done for today with no thought 

about tomorrow.

I’ve had the pleasure of working with teams in more than a dozen different countries 

to improve software-development processes and help teams get their products to 

market. As you contemplate the material and concepts in this book, I encourage you to 

start with the low-hanging fruit that will have the most dramatic impact on your software 

and business in the shortest amount of time. Reinvesting the time saved to further 

implement and improve your software will have a powerful effect on your products and 

end users.
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�Going Further
We have covered many topics in this book, and we are only at the beginning. Don’t  

forget that this will be an iterative process that very well might take you years. These  

are exciting times, and the following are a few more thoughts on where you can go  

from here:

•	 Consider purchasing my API Standard2 book, which provides a 

Doxygen-documented starting point for many microcontroller 

peripheral features and provides the Doxygen template source code 

with it.

•	 Determine whether this will be a personal development effort to start 

developing more reusable firmware or whether this is a team effort 

that will have management support. Get the key players and decision 

makers on board.

•	 Identify three potential areas to immediately improve in. What is your 

company’s low-hanging fruit? Could it be:

•	 Implementing Doxygen templates for readability?

•	 Leveraging the APIs and HALs in this book?

•	 Identifying design patterns used in your products?

•	 Once you have your top three priorities, rank each priority and review 

how well you are currently doing in this area.

•	 Create a roadmap of how these three priorities will be implemented in the 

next several months and what needs to happen in order to be successful. 

Don’t forget that this doesn’t need to be a detailed, formal plan.

•	 Identify metrics that need to be tracked in order to monitor the 

improvements and also the results that they are getting for the 

company.

2�https://www.beningo.com/store/an-api-standard-for-mcus/
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•	 Schedule reviews to monitor progress; adjust the roadmap and plan 

if necessary.

•	 Review your products and identify common design elements and 

procedures that could be turned into templates and checklists. 

Schedule time to convert these design patterns and procedures.

•	 Calculate the cost in opportunity, project delays, troubleshooting, 

and development costs that doing nothing could incur.

•	 Enjoy developing reusable firmware and improving the products that 

you work on.
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